Understanding Walkability
Walkability: How comfortable an area is for walking

- How Accessible
- How Welcoming
- How Convenient
- How Safe
Accessibility: The degree to which the built environment allows and encourages all users

- Streets
- Intersections
- ADA Compliance
Understanding Streets

<table>
<thead>
<tr>
<th>Range of Speed (Miles per Hour)</th>
<th>Noise Level</th>
<th>Traffic Volume (Vehicles per Day)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10 - 20</td>
<td>Low</td>
<td>50 - 900</td>
</tr>
<tr>
<td>25 - 30</td>
<td>Moderate</td>
<td>2,000 - 15,000</td>
</tr>
<tr>
<td>30 - 50</td>
<td>High</td>
<td>10,000 - 40,000</td>
</tr>
</tbody>
</table>

![Street Types](image.jpg)
Streets & Walkability
What Is vs. What Could Be…

Which street moves more vehicles per day?
The Parts of a Street

25-35 mph Design - With these dimensions, most motorists feel comfortable traveling at or below 35 mph. Speeding is reduced with these dimensions.

- Sidewalks
- Bike Lanes
- Vehicle Travel Lanes
- Driveways
- Parking

Trees to form tall vertical wall
Trees are spaced 15-25 feet apart. Can be placed close to curb only when bike lanes or on-street parking create extra barrier width from moving vehicles.

Sidewalk 5'0"
Increased to eight feet near schools

Bike lane six feet
Critical curb to curb dimension. Without six feet in bike lane, many functions fail, such as having space for cars to pull into to let emergency response teams get by.

Buffer 4-8 Feet
Preference is 6 feet with trees set back four feet from the curb

Sidewalk attached to curb
Minimum width 6 feet, with 7-8 feet preferred. When next to retaining wall, minimum width is 8 feet.

Ten inch line
8-10" line is used. Preference is 10 inches thermoplastic or other low maintenance line

Median Varies
6-8 feet preferred to allow for landscaping, maintenance and adequate pedestrian storage in crossings
The Parts of a Street

Six Feet

Ten Feet
Sidewalks
Bike Lanes

- Six Foot Parking Lane
- Seven Foot Bike Lane
- Ten Foot Lane
Travel Lanes
Ranges for Lane Widths

<table>
<thead>
<tr>
<th>Type of Roadway</th>
<th>Rural</th>
<th></th>
<th>Urban</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>US (feet)</td>
<td>Metric (meters)</td>
<td>US (feet)</td>
</tr>
<tr>
<td>Freeway</td>
<td>12</td>
<td>3.6</td>
<td>12</td>
</tr>
<tr>
<td>Ramps (1-lane)</td>
<td>12-30</td>
<td>3.6-9.2</td>
<td>12-30</td>
</tr>
<tr>
<td>Arterial</td>
<td>11-12</td>
<td>3.3-3.6</td>
<td>10-12</td>
</tr>
<tr>
<td>Collector</td>
<td>10-12</td>
<td>3.0-3.6</td>
<td>10-12</td>
</tr>
<tr>
<td>Local</td>
<td>9-12</td>
<td>2.7-3.6</td>
<td>9-12</td>
</tr>
</tbody>
</table>
Complete Streets are streets for everyone. They are designed and operated to enable safe access for all users. Pedestrians, bicyclists, motorists and transit riders of all ages and abilities must be able to safely move along and across a complete street.
Example of a Complete Street
La Jolla Boulevard, San Diego, CA
Example of a Complete Street

US 62, Hamburg, NY
Typical Section

- Transit Stop
- Turn Lane (colorized)
- Crossing Island
- Bike Lanes Colorized
TYPICAL COMMERCIAL SECTION

WITH PARKING AND COLORIZED BIKE Lanes