What is written without effort is in general read without pleasure.

Samuel Johnson

A devoted group of policy makers and local agency staff guided development of the 2025 Regional Transportation Plan. The RTP Work Group shaped the form and content of this Plan. Their efforts – frequent meetings, unflagging review, and thoughtful debate – enriched the content and solidified the foundational ideas of the Plan. The Regional Council, Policy Board and staff offer their thanks and appreciation to the Work Group members.

Ann Burgman Transportation Policy Board
Doug DeForest Transportation Policy Board
Mark Foutch Thurston Regional Planning Council
Pete Kmet Transportation Policy Board
Bob Macleod Transportation Policy Board
Lennea Magnus Thurston Regional Planning Council
Dennis McVey Thurston Regional Planning Council
Dale Rancour Technical Advisory Committee
Dave Riker Technical Advisory Committee
Graeme Sackrison Thurston Regional Planning Council

Parametric, Inc. provided critical modeling support in development of this Plan.

Thanks for the work of the policy makers who retired from the Regional Council or the Transportation Policy Board at the end of 2003.

Fred Finn Griffin School District
Mark Foutch City of Olympia
Matthew Greene City of Olympia
Steve Pottle Port of Olympia
Bruce Zeller City of Tumwater
HURSTON REGIONAL PLANNING COUNCIL (TRPC) is an 18-member intergovernmental board made up of local governmental jurisdictions within Thurston County plus the Confederated Tribes of the Chehalis Reservation and the Nisqually Indian Tribe. The Council was established in 1967 under RCW 36.70.060 which authorized creation of regional planning councils.

TRPC’s mission is to “Provide Visionary Leadership on Regional Plans, Policies and Issues.” The primary functions of TRPC are to develop regional plans and policies for transportation (as the federally recognized Metropolitan Planning Organization and state recognized Regional Transportation Planning Organization), growth management, environmental quality and other topics determined by the Council; provide data and analysis to support local and regional decision making; act as a “convener” to build community consensus on regional issues, through information and citizen involvement; build intergovernmental consensus on regional plans, policies and issues, and advocate local implementation; and provide planning, historic preservation and technical services on a contractual basis.

This report was prepared as part of the Thurston Regional Planning Council’s 2003-2004 regional work program.
2004 MEMBERSHIP
OF
TRANSPORTATION POLICY BOARD

<table>
<thead>
<tr>
<th>Governmental Jurisdiction</th>
<th>Representative</th>
</tr>
</thead>
<tbody>
<tr>
<td>City of Lacey</td>
<td>Ann Burgman</td>
</tr>
<tr>
<td>City of Olympia</td>
<td>Doug Mah</td>
</tr>
<tr>
<td>City of Rainier</td>
<td>pending</td>
</tr>
<tr>
<td>City of Tenino</td>
<td>John O’Callahan</td>
</tr>
<tr>
<td>City of Tumwater</td>
<td>Pete Kmet</td>
</tr>
<tr>
<td>City of Yelm</td>
<td>Ron Harding</td>
</tr>
<tr>
<td>Thurston County</td>
<td>Bob Macleod</td>
</tr>
<tr>
<td></td>
<td>Lester Olson (alternate)</td>
</tr>
<tr>
<td>Intercity Transit</td>
<td>Tom Fender</td>
</tr>
<tr>
<td>Port of Olympia</td>
<td>Bob VanSchoorl</td>
</tr>
<tr>
<td>Nisqually Indian Tribe</td>
<td>pending</td>
</tr>
<tr>
<td>Washington State Department of</td>
<td>Joan Cullen</td>
</tr>
<tr>
<td>General Administration</td>
<td></td>
</tr>
<tr>
<td>Washington State Department of</td>
<td>Randy Hain</td>
</tr>
<tr>
<td>Transportation, Olympic Region</td>
<td></td>
</tr>
<tr>
<td>Providence St. Peter Hospital</td>
<td>Bob Gillette</td>
</tr>
<tr>
<td>Citizen Advisor</td>
<td>Frank Hensley</td>
</tr>
<tr>
<td>Citizen Advisor</td>
<td>Doug DeForest</td>
</tr>
</tbody>
</table>

Chair Doug Mah
Vice Chair Ron Harding

EX OFFICIO TPB MEMBERS
WASHINGTON STATE LEGISLATURE

2nd Legislative District
- Senator Marilyn Rasmussen
- Representative Roger Bush
- Representative Tom Campbell

20th Legislative District
- Senator Dan Swecker
- Representative Gary Alexander
- Representative Richard DeBolt

22nd Legislative District
- Senator Karen Fraser
- Representative Sam Hunt
- Representative Sandra Romero

35th Legislative District
- Senator Tim Sheldon
- Representative William Eickmeyer
- Representative Kathy Haigh
2004 MEMBERSHIP
OF
TECHNICAL ADVISORY COMMITTEE

<table>
<thead>
<tr>
<th>Governmental Jurisdiction</th>
<th>Representative</th>
</tr>
</thead>
<tbody>
<tr>
<td>City of Lacey</td>
<td>Martin Hoppe</td>
</tr>
<tr>
<td>City of Olympia</td>
<td>Dave Riker</td>
</tr>
<tr>
<td>City of Tumwater</td>
<td>Doug Johnston</td>
</tr>
<tr>
<td>City of Yelm</td>
<td>Jim Gibson</td>
</tr>
<tr>
<td>Thurston County</td>
<td>Dale Rancour</td>
</tr>
<tr>
<td>Intercity Transit</td>
<td>Dennis Bloom</td>
</tr>
<tr>
<td>Washington State Dept. of Transportation Olympic Region</td>
<td>George Kovich</td>
</tr>
<tr>
<td>Washington State Dept. of Transportation Olympic Region Highways and Local Programs</td>
<td>Brian Moorehead</td>
</tr>
</tbody>
</table>

Chair
Dale Rancour

Vice Chair
Dennis Bloom

THURSTON REGIONAL PLANNING COUNCIL STAFF

Thera Black Senior Planner
Holly Gilbert Senior Planner
Kathy McCormick Senior Planner
Steven W. Morrison Senior Planner
Karen Parkhurst Senior Planner
Shanna Stevenson Senior Planner
Pete Swensson Senior Planner
Paul Brewster Associate Planner
Jailyn Brown Associate Planner
Veena Tabbutt Associate Planner
Janet Rhoades Assistant Planner
Bhanu Yerra Transportation Engineer
David Read Information Technology Manager
Scott Carte GIS Coordinator
Jeff Holcomb GIS Analyst
Ron Towle Senior Graphic Designer
Polly Flanagan Accountant
Sarah Phillips Project Assistant
Rosalie Bostwick Office Manager
Louise Bobier Administrative Assistant
Michelle Miller Office Assistant II
Lon D. Wyrick Executive Director
Susan Andrews Assistant Director
Traveling through the 2025 Plan

The Plan follows a traditional order and format, which should make for easy maneuvering.

Executive Summary
Major messages. Short form.

Guiding Principles
Underlying values.

Introduction
Context.

Recommendations
Project List. Study and Planning Initiatives.

Goals and Policies
What we will do. How we will do it.

Alternatives Analysis
What did we look at? Why did we select or reject options?

Finance
What it costs. How we pay for it. Financial constraint.

Environmental Considerations
Impacts of choices. Good stewards?

Appendices
Read more about it.
Table of Contents

Executive Summary ... ES-1

Guiding Principles ... GP-1

1. Introduction .. 1-1
 Purpose.. 1-1
 Planning Timeline.. 1-2
 Roles and Relationships ... 1-2
 Requirements.. 1-3
 Retrospective.. 1-5
 Regional Conditions .. 1-8
 The Challenge... 1-10

2. Recommendations .. 2-1
 TRPC Work Program Priorities .. 2-1
 Regionally Significant Projects ... 2-6
 Streets, Roads and Bridges .. 2-7
 Public Transportation... 2-34
 Non-Motorized Facilities ... 2-38
 Transportation Technologies ... 2-41
 WSDOT Projects .. 2-46

3. Goals and Policies .. 3-1
 Transportation and Land Use Consistency 3-6
 Multimodal Transportation System .. 3-8
 Barrier-Free Transportation ... 3-10
 System Safety and Security ... 3-12
 System Maintenance and Repair ... 3-14
 Travel Demand Management .. 3-16
 Transportation Technologies ... 3-18
 Freight Mobility ... 3-20
 Streets, Roads and Bridges ... 3-22
 Public Transportation ... 3-24
 Biking ... 3-26
 Walking .. 3-28
Table of Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rail</td>
<td>3-30</td>
</tr>
<tr>
<td>Aviation</td>
<td>3-32</td>
</tr>
<tr>
<td>Marine Transportation</td>
<td>3-34</td>
</tr>
<tr>
<td>Public Involvement</td>
<td>3-36</td>
</tr>
<tr>
<td>Intergovernmental Coordination</td>
<td>3-38</td>
</tr>
<tr>
<td>Environmental and Human Health</td>
<td>3-40</td>
</tr>
<tr>
<td>Performance Measures</td>
<td>3-42</td>
</tr>
<tr>
<td>Transportation Funding</td>
<td>3-44</td>
</tr>
<tr>
<td>4. Alternatives Analysis</td>
<td>4-1</td>
</tr>
<tr>
<td>Overview</td>
<td>4-1</td>
</tr>
<tr>
<td>Book-End Alternatives</td>
<td>4-2</td>
</tr>
<tr>
<td>Recommended Alternative Options</td>
<td>4-6</td>
</tr>
<tr>
<td>Land Use Options for 2025 RTP Analysis</td>
<td>4-7</td>
</tr>
<tr>
<td>Analysis Tools</td>
<td>4-10</td>
</tr>
<tr>
<td>Effect of Land Use Options on Select Travel Characteristics</td>
<td>4-13</td>
</tr>
<tr>
<td>Value of the Land Use Options Analysis</td>
<td>4-22</td>
</tr>
<tr>
<td>Value of Corridor Analysis</td>
<td>4-25</td>
</tr>
<tr>
<td>Network Performance</td>
<td>4-27</td>
</tr>
<tr>
<td>Rural Roads Initiative</td>
<td>4-28</td>
</tr>
<tr>
<td>Summary of Alternatives</td>
<td>4-29</td>
</tr>
<tr>
<td>5. Finance</td>
<td>5-1</td>
</tr>
<tr>
<td>Financial Constraint</td>
<td>5-1</td>
</tr>
<tr>
<td>Forecast Levels of Detail</td>
<td>5-1</td>
</tr>
<tr>
<td>Forecasting 2025 Revenues</td>
<td>5-2</td>
</tr>
<tr>
<td>Forecasting 2025 Costs</td>
<td>5-3</td>
</tr>
<tr>
<td>Least Cost Planning</td>
<td>5-4</td>
</tr>
<tr>
<td>Implications of Financial Constraint</td>
<td>5-5</td>
</tr>
<tr>
<td>The 2025 Forecasts</td>
<td>5-6</td>
</tr>
<tr>
<td>6. Environmental Considerations</td>
<td>6-1</td>
</tr>
<tr>
<td>Natural Environment</td>
<td>6-1</td>
</tr>
<tr>
<td>Built Environment</td>
<td>6-5</td>
</tr>
<tr>
<td>Social Environment</td>
<td>6-9</td>
</tr>
</tbody>
</table>
Appendices

A. Glossary ... A-1
B. Locally Significant Projects B-1
C. Trends and Forecasts .. C-1
D. Inventory of Facilities .. D-1
E. Regulatory Requirements E-1
F. Public Involvement ... F-1
G. Final Supplemental Environmental Impact Statement G-1
H. Air Quality Conformity H-1
I. Transportation Modeling Process I-1
J. Project Accomplishments J-1

List of Tables

Table 2-1: Regionally Significant Projects – Streets, Roads and Bridges Reference .. 2-7
Table 2-2: Capacity Projects 2-8
Table 2-3: New Connections or Alignments 2-18
Table 2-4: Corridor Studies and Sub-Area Plans 2-24
Table 2-5: Assessment Areas 2-29
Table 2-6: Public Transportation Projects and Studies 2-35
Table 2-7: Non-Motorized Facilities Projects and Studies ... 2-39
Table 2-8: Transportation Technology Projects and Studies ... 2-42
Table 2-9: WSDOT Projects and Studies 2-47
Table 4-1: Forecast Distribution for City Center Infill .. 4-8
Table 4-2: Summary of Residential Development in the Adopted 2025 Forecast 4-24
Table 4-3: Summary of Pass/Fail LOS Standards 4-27
Table 5-1: 2025 Streets, Roads, and Bridges Revenue Forecast ... 5-7
Table 5-2: 2025 Streets, Roads, and Bridges Expenditure Forecast .. 5-7
Table of Contents

Table 5-3: 2025 Streets, Roads, and Bridges Forecast Summary ... 5-8
Table 5-4: 2025 Public Transportation Revenue Forecast ..5-8
Table 5-5: 2025 Public Transportation Expenditure Forecast ...5-9
Table 5-6: 2025 Public Transportation Forecast Summary ...5-9

Table C-1: Thurston County Population 1990-2000 .. C-2
Table C-2: Small Area Population Estimates and Population Forecast, Thurston County Jurisdictions, 1990-2025 ... C-3
Table C-3: Population Increases through Migration and Natural Increase, Thurston County, 1950-2003 ... C-4
Table C-4: Household Size .. C-4
Table C-5: Dwelling Unit Estimates of Cities and UGAs, Thurston County, 1994-2002 .. C-5
Table C-6: Dwelling Unit Forecast of Cities and UGAs, Thurston County, 2005-2025 ... C-6
Table C-7: Workers by Gender .. C-7
Table C-8: Household Vehicles ... C-7
Table C-9: Means (Mode) of Transportation to Work ... C-8
Table C-10: Travel Time to Work ... C-8
Table C-11: Time Leaving Home to Go to Work .. C-9
Table C-12: Worksite Destinations of Thurston County Residents ... C-9
Table C-14: Intercity Transit Ridership, 1990-2002 ... C-11
Table C-15: Mode Share - State Mandated CTR Work Sites, Thurston County, 1993, 1999, and 2001 .. C-11
Table C-16: Trends in Population Compared to Vehicle Registration - Thurston County, 1970-2000 ... C-12

Table G-1: Population and Employment Statistics for Thurston County .. G-5
Table G-2: Comparison of Regional Transportation Plans ... G-7
Table G-3: Summary of 2025 RTP Alternatives G-8
Table G-4: Summary of Impacts and Mitigation G-10
Table G-5: Maintenance Area PM10 Emissions G-23
Table G-6: Maintenance Area and Regional VMT in 2025 G-26
Table G-7: 2025 New Paved Roadway Surface Estimate G-29
Table G-8: Project Distribution by Watershed for 2025 G-30
Table G-9: Increases in Thurston County Population, Land Miles and VMT, 2000 to 2025 G-38
Table G-10: List of Proposed Projects G-62
Table G-11: Identified Cultural Resources G-41

Table H-1: Maintenance Area VMT and Total PM10 Mobile Emissions ... H-7
Table H-2: Auto and Road Dust Emission Factors H-7

Table J-1: Summary of Project Accomplishments 1993 through 2001 ... J-2

List of Figures
Figure 4-1: Zones Designated for City Center Infill 4-8
Figure 4-2: 2025 Distribution of Trips by Trip Types, Adopted Land Use Forecast ... 4-14
Figure 4-3: 2025 Region-Wide Mode Split, All Trip Types – Adopted Land Use Forecast .. 4-14
Figure 4-4: 2025 Mode Split for Home-Work Trips – Adopted Land Use Forecast ... 4-15
Figure 4-5: Change in Person Trips by Mode from Adopted 2025 Region-Wide Forecast, Sorted by Land Use Option 4-16
Figure 4-6: 2025 Mode Split Results for City Centers – City Center Infill Option ... 4-18
Figure 4-7: 2025 Mode Split for Home-Work Trips in City Centers – City Center Infill Option .. 4-19
Figure 4-8: VMT Analysis of Land Use Options – Region-Wide 2025 Totals ... 4-20
Figure 4-9: VMT Analysis of Land Use Options – City Centers ... 4-20
Figure 4-10: Generalized Regional Travel Flows 4-21
Table of Contents

Figure C-1: Driver and Vehicle Trends in Thurston County, 1980-2002 .. C-12

Figure G-1: 2025 New Paved Roadway Surface G-29

Figure H-1: Thurston County PM10 Trends H-2

Figure I-1: Relationship between Individual and Aggregated Travel Decisions ... I-4

List of Maps

Map 2-1: 2025 Capacity Projects ... 2-53
Map 2-2: 2025 New Connections or Alignments 2-54
Map 2-3: 2025 Corridor Studies and Sub-Area Plans 2-55
Map 2-4: 2025 Assessment Areas ... 2-56
Map 2-5: 2025 Public Transportation Projects 2-57
Map 2-6: 2025 Non-Motorized Transportation Projects 2-58
Map 2-7: 2025 WSDOT Projects .. 2-59
Map 2-8: Adopted 2-Hour P.M. Peak Level of Service (LOS)
Policy by Geography ... 2-60

Map 4-1: 2025 Adopted 2-Hour P.M. Peak
Level of Service (LOS) Standards by Geography 4-31
Map 4-2: 2025 Corridors for Regional Analysis 4-32
Map 4-3: 2025 “No New Capacity Revenue” Modeled Roadway Scenario Network Performance – Regional View 4-33
Map 4-4: 2025 “No New Capacity Revenue” Modeled Scenario Network Performance – Urban View 4-34
Map 4-5: 2025 Recommendations Modeled Roadway Scenario Network Performance – Regional View 4-35
Map 4-6: 2025 Recommendations Modeled Roadway Scenario Network Performance – Urban View 4-36

Map C-1: 2025 Dwelling Unit Density by Traffic
Analysis Zone .. C-13
Map C-2: 2025 Employment Density by Traffic
Analysis Zone ... C-14
Map C-3: Comparison of Average Travel Times between 2000 and 2025 on State Route 510/Pacific Avenue C-15
Map C-4: Comparison of Average Travel Times between 2000 and 2025 on Interstate 5 ...C-16
Map C-5: Comparison of Average Travel Times between 2000 and 2025 on Cleveland Avenue and Yelm HighwayC-17
Map C-6: Comparison of Average Travel Times between 2000 and 2025 on College Street and Rainier RoadC-18

Map D-1: Cities, Towns, Indian Reservations and Public Lands ...D-3
Map D-2: Centerline Miles of Paved RoadsD-4
Map D-3: Transit Service Area and RoutesD-5
Map D-4: Multimodal Travel and Freight Mobility Facilities ..D-6
Map D-5: Non-Motorized, On-Street and Off-Street, Transportation Facilities ...D-7
Map D-6: Existing and Planned Intelligent Transportation Systems (ITS Facilities) ..D-8
Map D-7: I-5 Corridor Incident Management Detour Routes ..D-9

Map G-1: PM10 Maintenance Area ...G-24
Map G-2: No Build Alternative Projects by WatershedG-70
Map G-3: Recommended Alternative Projects by Watershed ..G-71
Map G-4: Full Build Alternative Projects by WatershedG-72

Map H-1: Thurston Region PM10 Maintenance AreaH-3

Map I-1: 2001 Thurston County Traffic Analysis Zones ..I-2
Adopting Resolution

Resolution No. 2004-4, effective May 7, 2004

Amendments

Resolution No. 2005-3, effective June 3, 2005
Resolution No. 2006-4, effective June 2, 2006
Resolution No. 2007-5, effective June 1, 2007
THURSTON REGIONAL PLANNING COUNCIL

RESOLUTION NO. 2004-4

RELATING to the 2025 Thurston Regional Transportation Plan – Guiding Our Future, a long-range transportation plan for the Thurston region.

WHEREAS, the Thurston Regional Planning Council is designated by the governor as the Metropolitan Planning Organization (MPO) and the Regional Transportation Planning Organization (RTPO) for the Thurston region; and

WHEREAS, as the MPO and RTPO, the Thurston Regional Planning Council has specific responsibilities under federal and state laws, including the federal Transportation Equity Act for the 21st Century (TEA21) and Clean Air Act, and the state Growth Management Act (GMA) and Washington Clean Air Act; and

WHEREAS, federal and state laws require that the Thurston Regional Planning Council periodically review and update its Regional Transportation Plan (RTP) to reflect progress and changes regarding plan implementation, and to provide guidance on future direction based on the latest forecasts of regional demographic and development patterns, consistent with locally-adopted land use plans under the Growth Management Act; and

WHEREAS, in 1993 the Thurston Regional Planning Council adopted a 2010 RTP and updated it in 1998 to extend the planning horizon to 2020, in compliance with the above referenced responsibilities; and

WHEREAS, in 1999 the Thurston Regional Planning Council updated its regional demographic assumptions and adopted a 2025 population and employment forecast reflective of general growth patterns and local land use policies and development objectives; and

WHEREAS, consistent with state and federal requirements, TRPC has engaged local, state, and federal agencies and the region’s citizens in a continuing, cooperative, and comprehensive planning process that informs, and is informed by, local and state planning processes; and

WHEREAS, a Supplemental Environmental Impact Statement has been prepared and reviewed pursuant the State Environmental Policy Act to evaluate significant environmental issues related to regional transportation plan implementation; and

WHEREAS, the Thurston Regional Planning Council is to certify that this RTP complies with all state and federal air quality conformity requirements for particulate matter 10 microns in sizes or less (PM10); and
WHEREAS, the Thurston Regional Planning Council is to certify that this RTP meets all other state and federal requirements pertaining to long-range regional transportation plans; and

WHEREAS, the 2025 Thurston Regional Transportation Plan is to serve as the required regional transportation plan under state and federal laws;

NOW, THEREFORE BE IT RESOLVED BY THE THURSTON REGIONAL PLANNING COUNCIL:

THAT the 2025 Thurston Regional Transportation Plan – Guiding Our Future be adopted as the long-range regional transportation plan for the Thurston region, to provide the basis on which transportation decisions will be made by the Regional Council and its members; and

THAT the 2025 Thurston Regional Transportation Plan is found to be in conformity with the federal and state Clean Air Acts, TEA21 requirements, and other state and federal requirements; and

THAT the 2025 Thurston Regional Transportation Plan shall be reviewed and amended as necessary to maintain its currency with issues and opportunities specific to the Thurston region.

ADOPTED this 7th day of May 2004.

ATTEST:

Lon D. Wyrick
Executive Director

Kenneth A. Jones
Chair, Thurston Regional Planning Council
THURSTON REGIONAL PLANNING COUNCIL

RESOLUTION NO. 2005-3

RELATING to the 2025 Thurston Regional Transportation Plan – Guiding Our Future, a long-range transportation plan for the Thurston region.

WHEREAS, the Thurston Regional Planning Council is designated by the governor as the Metropolitan Planning Organization (MPO) and the Regional Transportation Planning Organization (RTPO) for the Thurston region; and

WHEREAS, federal and state laws require that the Thurston Regional Planning Council periodically review and update its Regional Transportation Plan (RTP) to reflect progress and changes regarding plan implementation, and to meet other requirements; and

WHEREAS, the Thurston Regional Planning Council is to certify that this RTP complies with all state and federal air quality conformity requirements for particulate matter 10 microns in sizes or less (PM10); and

WHEREAS, the Thurston Regional Planning Council is to certify that this RTP meets all other state and federal requirements related to long-range regional transportation plans;

NOW, THEREFORE BE IT RESOLVED BY THE THURSTON REGIONAL PLANNING COUNCIL:

THAT the 2005 amendment be adopted as a part of the long-range regional transportation plan; and

THAT the amended 2025 Thurston Regional Transportation Plan – Guiding Our Future is found to be in conformity with the federal and state Clean Air Acts, the Thurston County PM10 Maintenance Plan, and other state and federal requirements; and

THAT the amended 2025 Thurston Regional Transportation Plan shall continue to be reviewed and amended as necessary to maintain its currency with issues and opportunities specific to the Thurston region.

ADOPTED this 3rd day of June 2005.

ATTEST:

[Signatures]

Lon D. Wyrick
Executive Director

Kenneth A. Jones
Chair, Thurston Regional Planning Council

57:lb
THURSTON REGIONAL PLANNING COUNCIL

RESOLUTION NO. 2006-4

RELATING to the 2025 Thurston Regional Transportation Plan – Guiding Our Future, a long-range transportation plan for the Thurston region.

WHEREAS, the Thurston Regional Planning Council is designated by the governor as the Metropolitan Planning Organization (MPO) and the Regional Transportation Planning Organization (RTPO) for the Thurston region; and

WHEREAS, federal and state laws require that the Thurston Regional Planning Council periodically review and update its Regional Transportation Plan (RTP) to reflect progress and changes regarding plan implementation, and to meet other requirements; and

WHEREAS, the Thurston Regional Planning Council is to certify that this RTP complies with all state and federal air quality conformity requirements for particulate matter 10 microns in sizes or less (PM$_{10}$); and

WHEREAS, the Thurston Regional Planning Council is to certify that this RTP meets all other state and federal requirements related to long-range regional transportation plans;

NOW, THEREFORE BE IT RESOLVED BY THE THURSTON REGIONAL PLANNING COUNCIL:

THAT the 2006 amendment be adopted as a part of the long-range regional transportation plan; and

THAT the amended 2025 Thurston Regional Transportation Plan – Guiding Our Future is found to be in conformity with the federal and state Clean Air Acts, the Thurston County PM10 Maintenance Plan, and other state and federal requirements; and

THAT the amended 2025 Thurston Regional Transportation Plan shall continue to be reviewed and amended as necessary to maintain its currency with issues and opportunities specific to the Thurston region.

ADOPTED this 2nd day of June 2006.

ATTEST:

[Signature]
Lon D. Wyrick
Executive Director

[Signature]
Kenneth A. Jones
Chair, Thurston Regional Planning Council
THURSTON REGIONAL PLANNING COUNCIL

RESOLUTION NO. 2007-05

RELATING to the 2025 Thurston Regional Transportation Plan – Guiding Our Future, a long-range transportation plan for the Thurston region.

WHEREAS, the Thurston Regional Planning Council is designated by the governor as the Metropolitan Planning Organization (MPO) and the Regional Transportation Planning Organization (RTPO) for the Thurston region; and

WHEREAS, federal and state laws require that the Thurston Regional Planning Council periodically review and update its Regional Transportation Plan (RTP) to reflect progress and changes regarding plan implementation, and to meet other requirements; and

WHEREAS, the Thurston Regional Planning Council is to certify that this RTP complies with all state and federal air quality conformity requirements for particulate matter 10 microns in size or less (PM10); and

WHEREAS, the Thurston Regional Planning Council is to certify that this RTP meets all other state and federal requirements related to long-range regional transportation plans;

NOW, THEREFORE BE IT RESOLVED BY THE THURSTON REGIONAL PLANNING COUNCIL:

THAT the 2007 amendment be adopted as part of the long-range regional transportation plan; and

THAT the amended 2025 Thurston Regional Transportation Plan – Guiding Our Future is found to be in conformity with the federal and state Clean Air Acts, the Thurston County PM10 Maintenance Plan, and other state and federal requirements; and

THAT the amended 2025 Thurston Regional Transportation Plan shall continue to be reviewed and amended as necessary to maintain its currency with issues and opportunities specific to the Thurston region.

ADOPTED this 1st day of June 2007.

ATTEST:

Lon D. Wyrick
Executive Director

Kenneth A. Jones
Chair, Thurston Regional Planning Council
Executive Summary
Executive Summary

What is a Regional Transportation Plan?

The Regional Transportation Plan (RTP) serves as a strategic blueprint for the region’s transportation system. It provides an overall analysis of how transportation will work in the region over a 20 year time frame and supports coordination among jurisdictions. It also acts as an important tool in meeting state and federal transportation requirements, ensuring continued funding from these sources. The RTP identifies those projects and issues that change the way traffic flows throughout the region, complementing the local planning that makes the roadway network function within each jurisdiction.

Transportation planning is closely related to land use planning – a chicken and egg relationship. Which comes first – where people live and work, or where roads are located for traveling to home and work? In truth, each has a powerful influence on the other, and on the way the community looks and functions.

The regional transportation planning process, in the form it’s taken over the last decade, is closely related to land use planning, both by legislation and common understanding. The RTP is based upon the regional land use forecast that predicts how many residents will call the Thurston region home in 2025, as well as where they will live and work. The population and employment forecast information is then used to develop a sophisticated transportation model, calibrated to real life, that predicts where and how we will travel during certain periods of the day – morning, midday, and evening rush hour.

This information is analyzed in coordination with local transportation plans to create a list of “regionally significant” projects – those projects that support major travel routes in the region. Built or implemented by state, city, county, tribal, transit and port agencies, these projects are spread across many jurisdictions and can greatly impact the way traffic moves in a local area. Hence, the RTP provides a regional look, but actual projects still fall on individual entities to execute.
Past Plans and Accomplishments

The 2025 RTP is the third in a recent series of transportation plans. In the early 90's, the state adopted the Growth Management Act (GMA) and the federal government implemented the Intermodal Surface Transportation Efficiency Act of 1991 (ISTEA). This prompted the first RTP of the current series, “Transportation Futures 2010 – Making Connections” adopted in 1993, that helped shape the local comprehensive land use plans required by GMA. Major themes of this plan were developing high density, well-designed, mixed-use urban forms, connecting existing infrastructure, and reducing the evening rush hour drive alone rate.

The RTP was updated in 1998 with “TransAction 2020,” which heralded a number of firsts – incorporated adopted land use plans and forecasts, recognized that adding capacity won’t necessarily solve congestion, and required the projects included in the RTP be financially constrained by reasonable projections of future revenue.

Projects

“Transportation Futures 2010” and “TransAction 2020” laid the foundation for a $309 million investment in transportation projects in the region between 1993 and 2001. This includes completed projects (60%), projects underway, and projects with committed funding. Federal, state and local sources contributed roughly equal shares to finance these investments. The largest investments were in capacity, maintenance, preservation and replacement projects. Safety, efficiency and non-motorized capacity projects also received substantial investments.

In the period from 1993 to 2001, 341 projects were initiated. Private development contributed to many of these projects and completed other local improvements not reflected in the project total. Of these projects, 112 included bike and pedestrian improvements. The 39 regionally significant projects identified in “Transportation Futures 2010” and/or “TransAction 2020,” represent a $140 million investment.

Examples of some major investments:

- 4th/5th Avenue Bridge Reconstructions
- Regional Overlay and Resurfacing
- I-5 Widening from Maytown to 93rd
- I-5 Marvin Road Interchange Expansion
- Pacific Avenue/Lacey Boulevard One-Way Couplets
Olympia Transit Center
- Bald Hills Road Realignments and Upgrade
- Tumwater Boulevard (Airdustrial Way) Upgrades
- Chehalis -Western Trail Development

Other smaller investments also made important improvements:
- Installing bike lockers at Capital High School.
- Adding flashing beacons to North Thurston School crosswalks.

TDM

During this period the region established and expanded the Travel Demand Management Program (TDM), aimed at encouraging alternatives to driving alone, such as biking, walking, riding transit, carpooling, vanpooling, working from home, and changing work schedules. TDM supports a variety of purposes – increasing road capacity, reducing commute trips, managing traffic in construction zones, and changing travel patterns to schools.

Transit

Also during this time, transit increased substantially in the region, only to lose 40% of its funding base through state initiatives and legislative actions. While service continued, it was necessarily reduced. The service area was refocused to the urban core of Lacey, Olympia, and Tumwater, with connecting service to Yelm. Local support for transit, in the form of a voter approved sales tax increase, helped to re-establish service that had been cut. Ongoing efforts are underway to rebuild the fleet, improve passenger amenities and bring service back to previous levels.

Trails

Large sections of the regional trail network were established in this period, many using abandoned rail lines. The regional trail network, in addition to supplying recreational opportunities, serves as an important component of the transportation system, providing connections among our communities and reconnecting communities divided by development of I-5 and US 101. The “Bridging the Gap” project, a collective effort to connect the northern and southern portions of the Chehalis-Western Trail at I-5, Martin Way and Pacific Avenue, was started.

See Appendix J for more information on projects developed between 1993 and 2001.
Technology and Special Needs

Policy makers also initiated programs in several emerging fields – Intelligent Transportation Systems (ITS) to better use new transportation technologies; Special Needs Transportation to support youth, elders, people with disabilities and economically disadvantaged residents who were especially hard hit by transit service reductions; and Environmental Justice review to identify and address disproportionately high adverse effects of transportation projects on minority and low income populations.

The 2025 Plan

What the Plan Does

The 2025 Regional Transportation Plan is an update of the 2010 and 2020 plans. It extends the forecast timeframe of the transportation and land use models to 2025 and assesses the changes and progress since the last plan. Continuing many of the past themes, the 2025 Plan stays within existing revenue, prioritizes safety, preservation, efficiency and operations, and invests in multiple modes of transportation – creating choice. This Plan also outlines a series of critical regional issues to address in the next few years.

What the Plan Doesn’t Do

The 2025 Plan does not solve congestion. The community will continue to grow, becoming increasingly urban and suburban in nature, resulting in some congestion. The impacts of congestion, however, can be mitigated. It’s not inexpensive, not without limited environmental impacts, and not replete with all the desirable choices. The 2025 Plan balances mobility, cost, environmental impact and choice.

The 2025 RTP details many areas for further study. Addressing these enormous issues will take time, so answers are not included in the 2025 RTP. Clearly stating the issues in the RTP, however, is a significant step, to be followed by the creation of work groups to tackle these tough issues.

Values

In its Guiding Principles, Goals and Policies, and Environmental Considerations, the 2025 RTP establishes a foundation of values that shape the regional and local transportation projects,
studies and programs. The 2025 RTP proposes a transportation system that offers safe, efficient, affordable travel choices for people and goods, reflecting land use plans and long-term quality-of-life objectives, transportation decisions and investments. It is supportive, responsive, fiscally responsible, safety conscious, environmentally sensitive, collaborative, and provides choice.

Key Issues

Land use and performance measures were key components in developing the alternatives considered in the 2025 RTP. The RTP explored the impacts of modest changes in population distribution on the transportation system. Overall, these changes had little impact on future regional travel, although increasing density in urban areas shifted a significant number of trips to walking, biking and transit in those areas. The Plan notes that of all the housing that will exist in 2025, 40% will be built between now and 2025. Changes in the pattern of land use and transportation – to mitigate congestion, improve safety, and increase efficiency – may be possible, but require more in-depth analysis.

The 2025 RTP also investigated additional performance measures, including mode split, time-of-day modeling, vehicle miles traveled, and corridor travel time or speed. While additional work is needed to meaningfully interpret and apply these performance measures, some messages were clear:

- Travel time between most points will increase.
- Between the rural south County and the city centers, a large a.m. in-bound commute and a corresponding p.m. out-bound commute will occur.
- Average vehicle miles traveled will increase.
- How land use develops will influence mode split, particularly in urban areas.

Recommendations: Regionally Significant Issues to Address

The 2025 RTP identified a series of issues to explore which will form the basis for much of TRPC’s transportation work program in the intervening years before the next plan update.

- Better integrating transportation and land use planning.
- Selecting performance measures that best evaluate the entire multimodal system.
Executive Summary

- Establishing equitable and sustainable methods to pay for the transportation system.
- Deciding the role rail will play in the region’s transportation future.
- Improving freight movement.
- Designing and building a regional trail system.
- Better involving the region’s citizens and policy makers in the transportation decision-making process.

Recommendations: Regionally Significant Projects

Regionally significant projects include capacity, new connection, transit, and state highway system projects. Retained and expanded from the 2020 plan is the concept of assessment areas, where widening roads to add capacity may not be possible due to physical constraints, or may not make sense for other reasons. These are areas to watch and study, developing an appropriate array of solutions for the challenges they present. In this category, the 2025 RTP adds several rural road assessment areas. Regional analysis showed large a.m. and p.m. migrations into and out of the urban areas along these rural roads, yet road widening may not be a feasible solution.

The region’s top priorities remain safety, efficiency and preservation of the existing transportation system. Many of the 100+ projects and studies support these priorities, even ones that add capacity or otherwise modify the network. The regionally significant projects:

- Expand the existing system to provide more capacity (27 projects).
- Add new connections and realign existing roadways to provide more capacity and improve system efficiency (15 projects).
- Study and develop projects for corridors and focused areas of the road network to improve mobility and access (14 studies).
- Assess areas where adding capacity may not be possible or appropriate to determine the best response (16 studies).
- Restore and expand transit services and facilities (7 projects and studies).
Executive Summary

- Expand the regional trail system (5 projects and studies).
- Extend the use and integration of transportation technologies (8 projects and studies).
- Expand, improve access to, and better manage the state highway system in the region (12 projects and studies).

Much of this work will begin in the next 3 to 5 years, the planning horizon of the next Plan update.

Constraints: Fiscal

The 2025 RTP is required to be fiscally constrained and meets that requirement. The financial forecast for the 2025 RTP runs from 2000 to 2025, with a total estimated expense of building and maintaining the transportation system during that time of $1.7 billion. This expense can be accommodated within the revenues projected for the 25 year planning horizon.

<table>
<thead>
<tr>
<th>Expense (2000 to 2025)</th>
<th>Estimated Cost (in $ millions)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Streets, Roads, and Bridges</td>
<td>1,070</td>
</tr>
<tr>
<td>Locally Significant Projects</td>
<td>289</td>
</tr>
<tr>
<td>Maintenance, Preservation & Operations</td>
<td>459</td>
</tr>
<tr>
<td>Administration</td>
<td>144</td>
</tr>
<tr>
<td>Regionally Significant Projects</td>
<td>178</td>
</tr>
<tr>
<td>Public Transportation</td>
<td>632</td>
</tr>
<tr>
<td>Total Expenses</td>
<td>1,702</td>
</tr>
</tbody>
</table>

Note: The majority of funding for public transportation comes from revenue only available to transit.

Constraints: Air Quality Conformity

The 2025 RTP demonstrates conformity with all state and federal air quality requirements pertaining to PM10. PM10 is generated by many sources, primarily wood smoke and transportation. (PM10 is particulate matter less than 10 microns in aerodynamic diameter.) Appendix H demonstrates that regionally significant projects included in the 2025 Plan do not cause PM10 levels to exceed healthy limits – or even come close to those limits. Air quality is generally very good in Thurston County improving measurably since the late 1980s. Much of the improvement can be attributed to a steady decrease in particulate matter generated by wood smoke. The highest annual readings for particulate matter in the region have remained well below the national standard since 1990.
Next Steps – Guiding Our Future

The 2025 RTP envisions the future transportation system and guides our steps today in making that system a reality. Projects will be prioritized and implemented by local and state entities responsible for building and maintaining the transportation system. The public will be encouraged to participate in all levels of planning – with an emphasis on underserved populations. Limited regionally allocated funds will be distributed to priority projects. Work groups will form to answer the regionally significant questions posed in the Plan. The 2025 RTP serves as a vital blueprint, both in setting regional direction and focusing near term work priorities.
Guiding Principles
Guiding Principles

A Regional Foundation of Shared Values

Previous regional plans used a single vision to provide structure and context for policies and recommendations. Over the years, the region found it harder and harder to communicate those over-arching values in a vision statement. A single vision could not adequately speak to the diversity found in this region’s rural, suburban, and urban communities. Something different was needed, something that was “true” but which respected that diversity. That led to development of Guiding Principles for the 2025 RTP.

Guiding Principles – An Overview

The 2025 Regional Transportation Plan is founded on essential values that are true throughout the region, even if their expression may differ between city and town, port and transit, tribe and state, urban and rural.

Drawn from visions described in the region’s 2010 and 2020 plans, these principles embrace the interdependent relationship between transportation and land use. They reflect the need for a balance among safety, mobility, community, and environmental goals. They acknowledge the need for cost-effective solutions. They assume knowledgeable and on-going involvement of citizens and active participation by all affected agencies and communities. These principles guide the region toward a transportation system that meets the evolving needs of residents and businesses with safe, affordable, sensible choices.

Sometimes these principles may seem to contradict each other. In fact, as the region’s policy makers observed, individual projects or programs will rarely comply fully with all the values that guide local and regional decision-making. Instead transportation issues, choices, and consequences must be weighed against the full range of principles to choose the best alternative. No single value will always overshadow the rest. Effective transportation decisions must be sensitive to all aspects of individual and government situations, functions and constraints.
Guiding Principles for the 2025 Regional Transportation Plan

To develop a transportation system that offers safe, efficient, affordable travel choices for people and goods, while supporting land use plans and long-term quality of life objectives, transportation decisions and investments will be:

Supportive:

This means:

- Reflecting adopted community goals and plans.
- Integrating transportation and land use decision-making processes.
- Increasing viable, affordable travel choices for people and goods.
- Moving people efficiently and cost-effectively among diverse destinations.
- Improving access for all people, regardless of age, ability or income.
- Promoting local economies without compromising other core values.
- Making investments that contribute to a community’s overall sense of place.
- Complying with Growth Management Act requirements.
- Complying with all other state and federal requirements.

Responsive:

This means:

- Revising direction as necessary to adapt to changing situations or objectives.
- Initiating timely response as substantive issues evolve.
- Providing pragmatic, visionary leadership that maximizes future opportunities while recognizing today’s realities.

Fiscally Responsible:

This means:

- Making cost-effective investments that result in best value solutions for the community.
- Ensuring system funding is equitable.
- Being realistic about financial capacity and prioritizing accordingly.
Guiding Principles

- Maintaining existing investments.
- Supporting efficient use of transportation resources and facilities.
- Evaluating the full cost of alternatives and recommendations.

Safety Conscious:

This means:
- Making the system safer for all users.
- Designing facilities that are appropriate to their intended use and location.
- Building redundancy into critical network links as emergency safeguards.

Environmentally Sensitive:

This means:
- Minimizing impacts on air and water quality, and natural habitat and resources.
- Minimizing or mitigating impacts on neighborhoods.
- Making investments that add lasting value to our communities and their overall function.

Collaborative:

This means:
- Fostering on-going and inclusive community involvement and education.
- Ensuring affected parties understand issues related to choices, impacts, and timing.
- Promoting coordination among local, regional, tribal, state, and federal authorities.
- Coordinating with neighboring regions to identify workable strategies that ensure cross-regional consistency.
1. Introduction

A strategic blueprint
Introduction

Purpose

The Regional Transportation Plan serves as a strategic blueprint for the region’s transportation system.

Regional planning “makes sense,” and policy makers would engage in the process even absent state and federal requirements. A continuous, collaborative and coordinated planning approach addresses the needs of the entire region. Beyond a simple statement of purpose, the Regional Transportation Plan (RTP) serves many functions –

• Supports local, county, state, and tribal governments’ efforts to create and maintain livable communities throughout the region.

• Promotes movement of people, goods, and services in ways that minimize social, fiscal and environmental costs and impacts.

• Emphasizes taking care of the existing system through safety, maintenance and preservation programs.

• Embodies the philosophy that land use and transportation are inextricably linked and must be managed cooperatively to meet both land use goals and transportation needs.

• Recognizes that the rural resource lands, walkable neighborhoods, compact urban centers, and vital and diverse economies called for in local and tribal plans require a supportive transportation system.

• Seeks to improve the efficiency of the transportation system through a variety of means, such as using new road-building materials, trip reduction strategies, Intelligent Transportation Systems and alternative fuels.

• Acknowledges the diversity of need in the region and identifies strategies to improve mobility for all people – regardless of age, income or ability.

• Meets fiscal constraints, with revenues identified in the RTP sufficient to fund the listed projects and maintain the existing system.
1. Introduction

- Meets state and federal planning requirements and specific regulatory guidelines.
- Acknowledges that while the region has made progress since the last Plan, many challenges remain. The RTP boldly identifies those difficult next steps.

Planning Timeline

Historically, the Thurston region updated the RTP on a five-year cycle. Recent changes to the region’s air quality (AQ) attainment status under the Clean Air Act changed both the cycle and requirements for the region’s planning efforts. New planning requirements triggered a three-year update cycle and mandated additional air quality analysis of proposed transportation projects and programs.

The Thurston Regional Planning Council recognized the importance of achieving compliance, determining that timely consideration of the 2025 Regional Transportation Plan was crucial. To that end, regional policy makers and other partners committed to a compressed timeframe, focusing their efforts and resources on an early 2004 completion of the Draft Plan. While the timeframe may be compressed, the planning effort remains deliberative and collaborative.

Roles and Relationships

The Thurston Regional Planning Council coordinates the RTP planning process, but does not function in isolation. At various stages in the process and at various levels of formality, the policies, plans and projects of the many partners connect.

We recognize that a high degree of communication and coordination is necessary to serve the region and each individual partner effectively. In some cases, the coordination is required and in others just logical.

At the more formal level, state and federal laws mandate certain reporting relationships and consistencies. The Regional Transportation Plan must be consistent with Local Comprehensive Plans, which in turn must be consistent with the Washington Transportation Plan, and all must fit within the federal and state policies and guidelines.
1. Introduction

The RTP also recognizes that just as policies, plans and projects do not stop at a specific geographical or political boundary within the county, neither do they stop at the county line. Many Thurston County residents travel to Lewis, Grays Harbor, Mason, Pierce, Kitsap and King Counties for work and leisure, just as residents of the surrounding counties travel to and through Thurston County.

Regional policy makers know that land use, transportation, environmental and economic policies and conditions outside of the county may greatly affect this region. To that end, the RTP calls for appropriate levels of communication and coordination outside county borders.

Requirements

State and federal guidelines stipulate the elements and processes for creating and maintaining the Regional Transportation Plan. In many instances the requirements overlap, emphasizing the connection between state and federal regulation and goals.

Federal:

Requirements specific to federal law compel the RTP to look at least 20 years into the future and project the region’s needs, conditions and resources. Within that 20-year horizon, the Plan must contain short- and long-range strategies. What will the region do first and what will require further study or more long term efforts?

The federal government also mandates that the Plan address Intelligent Transportation Systems (ITS) – those technologies that help the region better communicate with travelers, more efficiently manage the system and more quickly respond to emergencies.

Federal requirements, because of the region’s new air quality attainment status, mandate a three-year update cycle for the Plan.
1. Introduction

State:

The state calls for integration and compliance among local land use plans, county wide planning programs and the state transportation plan. Like the Thurston region, the state also recognizes the relationships between land use and transportation, and requires inclusion of land use assumptions.

Standards and measurements are a state focus. For state approval, the RTP must determine regional level of service (LOS) standards and how system performance and the effectiveness of strategies will be measured over time.

The state also asks that the Plan be reviewed biennially for currency.

Combined:

Overarching themes permeate both state and federal guidelines. At both levels, the RTP must:

- Actively engage the public in both planning and implementation.
- Comply with laws governing civil rights; respect the needs of older Americans and persons with disabilities; and foster social equity.
- Promote efficiency, security, safety and maintenance of the system.
- Focus on both people and freight, calling for integration of all modes.
- Consider the environment and quality of life, comply with specific air quality rules and address environmental impacts.
- Encourage the use of technology to support planning and operations.
- Carefully appraise the relationship between community desires and community resources, and realistically outline financial and policy solutions.
Retrospective

“I had lived through a period of time when there were advances in the mode of transportation. First there was the ox team. In the 80s the demand for speed brought the democrat wagon, with which we could make the round trip to Olympia in one day. Then in the 90s there was the “hack,” and folks then remarked, “this is the way to travel.” This was soon supplanted by the two-seated buggy, and with the improved roads one could drive to Olympia in two hours. Then came the automobile and paved roads and the round trip to Olympia could be made in less time than it formerly took to curry, harness, and hitch the team to the carriage.”

Mrs. Elmira Whitaker, Bush Prairie 1938

The Thurston region enjoys a rich and varied transportation history. Over the years, transportation included political, gender, cultural, and economic overtones:

- From Indian water routes, to ferries across the Nisqually River, to the Mosquito Fleet;
- From a stage line between Olympia and Cowlitz via Grand Mound, to Northern Pacific Railroad’s selection of Tacoma – not Olympia – for their western terminus;
- From citizen complaints - 1889:

 “What’s the use of a street car if it don’t go where you want to go,” and “the town…is reached only by boat or over a little, jerk-water railroad.”

- To citizen compliments, the same year:

 “The Olympia dude can now make the circuit of the Public Square, arm in arm with his dudine, on a good sidewalk.”

- From women’s bicycle clubs, to a bond issue for a new bridge to the West Side; and
- From a Capitol Campus “rhubarb” about the 60-mile per hour speed limit, to the pressure on early commissioners for road building and other transportation programs.
1. Introduction

One major transportation event forever shaped the Thurston region. The location of Interstate 5, with its connection to US 101 and local interchanges continues to impact land use and transportation opportunities and challenges.

1960s

When TRPC was established in 1967, the Council addressed growth management issues even before it was fashionable or required, responding to pressures generated by the new interstate highway. Policy makers began to understand the connections between land use and transportation.

1970s

The regional policy makers considered the first “Thurston Regional Comprehensive Transportation and Planning Study” in 1975. It dealt with the benefits and residue of all the earlier transportation decisions. Even that early in the planning process, the region recognized the importance of a multimodal system and collaborative planning, listing objectives:

- Establish the relationship of land use options to transportation alternatives.
- Employ the latest transportation technology on an area-wide basis to serve as a model for local jurisdictions.
- Include all jurisdictions involved in transportation decisions.
1. Introduction

1980s
A little over 10 years later, regional decision makers struggled with freeway congestion, and recommended adding lanes and modernizing interchanges. They also encouraged a concentration of employment and housing in downtown Olympia, and began to add elements of Travel Demand Management (TDM) to the mix. These low-cost, high-benefit ideas included regional ridesharing programs, park-and-ride lots and employer-supported flextime. Growth in the urban fringe areas of the region generated a focus on deficiencies in the east-west and north-south travel corridors.

1990s
By 1993, state and federal thinking aligned with regional vision. The state adopted the Growth Management Act (GMA) and the federal government enacted the Intermodal Surface Transportation Efficiency Act of 1991 (ISTEA). In the Thurston region, “Transportation Futures 2010 – Making Connections” included a land use element that helped shape local comprehensive plans required under GMA. The Plan set an ambitious goal of reducing the share of drive-alone commuters to 60 percent and called for high density, well-designed, mixed-use urban forms. Another major theme – connections – promoted projects around the region that connected existing infrastructure.

“Transaction 2020,” the 1998 Regional Transportation Plan Update, included a number of “firsts” -

- First to incorporate adopted land use plans and regionally-coordinated population and employment forecasts.
- First to recognize that the region cannot “build its way out of congestion” and placed limits on road width.
- First to require “financial constraint,” calling for new taxes to fund programs, projects and services.

The region assessed the success of the 2010 Plan and made some course corrections: 1) Adjusted goals for drive-alone trips, focusing on reducing the growth in per capita vehicle miles traveled, and 2) acknowledged that rectifying old land use patterns would take more time than anticipated, suggesting several new tools and policies to ease the transition.

The 2020 RTP stood fast in its emphasis on alternatives and choice – calling for a doubling of transit service by 2020; more capacity for pedestrians and bikes on sidewalks; additional trails and bike lanes;
1. Introduction

and an increase in amenities such as park-and-ride lots. Once again, the region prioritized caring for the existing system over roadway expansion.

Regional Conditions

Unique geographical factors in Thurston County guide land use and transportation policies and strategies. The coastal lowlands, prairie flatlands, Cascade foothills, and numerous lakes, rivers, and wetlands draw people to the area, but also direct where development and transportation facilities can locate.

Despite only 52 clear days a year and an average annual rainfall of 51 inches, many residents engage in year-round biking or walking. Grey days and early winter nightfall require a transportation system with safe, well lighted, well maintained, clearly marked sidewalks, roads and trails. Because of decreasing revenues, tribes, local jurisdictions, and the state face increasing challenges to preserve and maintain system safety.

The Interstate 5 corridor runs through the heart of the region, providing access for transporting people, goods and services to the neighboring counties to the south and north. However, the freeway also divides communities, creating gaps for travelers, whether by foot, bike, or automobile.

Since the 1960s, Thurston County has been among the fastest growing counties in the state – adding 46,000 new residents between 1990 and 2000. Many of the new residents joined their neighbors in the unincorporated areas of the county, home to 55 percent of the population. The urban portions of Yelm, Rainier and Lacey outdistanced their fellow jurisdictions in growth, with Yelm experiencing the highest rate of increase in the past decade. Such development and growth in rural areas challenges the transportation system. Former rural roads now serve as major commute routes and through-traffic threatens local accessibility.

Forecasts predict that the county’s current 212,300 population will grow to 334,260 by 2025. Because of the community’s many amenities – a multimodal transportation system, and advanced health care and retirement facilities – older adults will comprise a larger percentage of the total population. Especially for seniors “aging in place” in the more remote areas of the county, transportation and other social systems will be under pressure to expand to match changing needs.
1. Introduction

Currently, one in four workers commutes outside the region to work, more than travel to Thurston County for employment. These outbound commuters are projected to represent an even higher percentage of the labor force by 2025. Most people are also traveling increased distances for jobs and other destinations. Daily vehicle miles traveled per driver is forecasted to increase to 38 miles per day by 2025. More travel and more miles also equate to more automobiles. In 2000, 24 percent, or one in four Thurston region households owned three or more vehicles. Many employers encourage workers to reduce impacts on the system through trip reduction programs. Such strategies removed nearly 20,000 vehicles from the state’s roads each morning in 2001.

The government sector continues to provide the largest share of jobs in the region – 39 percent in 2000. However, in recent years, large retail chains supplied jobs, goods and services for local residents, but also attracted consumers from neighboring counties. Employers and workers are scattered throughout the region. The system does not carry workers from large residential community X to large employment site Y, but instead must provide a variety of routes and travel options.

The region also reflects the general economic downturn. Increasing unemployment and other social conditions have multiplied the number of families in crisis. Exacerbated by recent voter Initiatives, state and local governments, school districts and transit agencies struggle to provide infrastructure and services to meet the demand. Without reliable, predictable revenues, communities will not be able to serve residents’ needs.

Despite growing challenges, the region successfully maintains and operates a system comprised of dozens of transit routes and services, over 2,000 miles of roadway, hundreds of miles of bike lanes and sidewalks, almost 90 miles of rail, a marine terminal and a regional airport. Looking to future needs in 2025, the community must continue to seek new methods and creative funding to maintain this diverse system.
1. Introduction

Because of natural disasters and world unrest, readiness is of growing importance. Partners are working together on incident response systems and emergency management. The 2001 Nisqually Earthquake also emphasized the gaps in communications among emergency service providers. Identification of alternate routes and new, more compatible, shared technologies are being explored.

The Challenge

As the region examines current realities and looks out to 2025, many questions arise. Does new development match growth management goals? Does the transportation system increase economic vitality, bringing new business to the community and efficiently moving goods?

What role does regulation play in where and how growth occurs? Are community resources and the burden of payment distributed equitably? What are the environmental and infrastructure costs of current patterns and trends? The Thurston region will need to monitor the land use and transportation vision against evolving reality.

Regional policy makers strive to create a transportation system that easily moves people and freight as efficiently as possible. Opinions vary widely on what that system looks like and how travel should occur. Some members of the community want more bike facilities and some want less. Some value speed, others safety. Some prioritize the needs of freight, others the needs of people. A number of residents use I-5 for local trips and others never use the freeway unless leaving the county. Many people face financial or physical challenges in traveling — no matter the mode.

2. Recommendations

Guiding our future
2. Recommendations

Recommendations

While recommendations are often located at the end of a plan or study, this Regional Transportation Plan brings them forward. It recognizes that for many people, the recommendations themselves are the primary outcome of the regional planning process. These recommendations reflect the Guiding Principles and Goals and Policies, and are the result of the extensive alternatives analysis described in Chapter 4.

The recommendations included as a part of the 2025 Regional Transportation Plan fall into two general categories:

- **TRPC Work Program Priorities**: Those actions or TRPC research that help answer some of the many questions and issues posed by the Plan.
- **Regionally Significant Projects**: Specific construction projects, programs, and preliminary studies. The “regionally significant” designation indicates that the project impacts travel over a large area.

The 2025 RTP is kept up to date through an annual amendment process. New projects are included in this chapter. Additionally, the long-range forecast is periodically updated, extending regional growth projections. The financial forecast and air quality conformity analysis are also updated annually based on the updated project list and regional forecast.

TRPC Work Program Priorities

Analysis for the 2025 Regional Transportation Plan pointed to future issues and opportunities meriting follow-up effort. These issues require the kind of coordination, collaboration, and broad perspective found at the regional policy maker table.

These recommendations will shape the regional transportation work program between now and the next major update of the Regional Transportation Plan – and likely beyond. They will complement actions and strategies at the local level, and should support more effective investment and decision-making processes at both the regional and local levels. The results will inform future updates of the Regional Transportation Plan.

The list of Program Priorities is extensive, and may not be entirely completed before the next major update of the RTP. The range of issues gives TRPC policy makers latitude in assessing priorities.
2. Recommendations

based on accomplishments, additional questions that may arise from this work and unanticipated unique opportunities. How the region proceeds with this work program will reflect other needs and resources, and will be determined by policy makers through the annual Unified Planning Work Program that governs the agency’s regional transportation efforts.

The Plan groups work program priorities by general topic, with no specific priority or sequence implied in the list.

• Land Use Measures
• System Performance Measures
• Funding Measures
• System Efficiency Measures
• Passenger Rail and Public Transportation
• Freight Mobility
• Regional Trail Strategy
• Transportation Outreach

Land Use Measures

Support better integration of transportation and land use decision-making processes.

• Vision/Reality Disconnect Project will identify, and TRPC will pursue, specific strategies to better align marketplace realities with the visions and obligations spelled out in adopted Comprehensive Plans. Some issues under this work program element:

Infill Realities – What is needed to make urban infill happen as called for in adopted plans?

Market Forces – How do market forces on and within the region influence land use decisions? Can the region better harness these pressures to align reality and vision?

More Data and Trend Analysis – The region’s Buildable Lands study generated new detailed land use data. What does that data reveal about the realities the region faces – and the opportunities?

Consistency with Transportation Expectations – Are development and transportation system expectations consistent?
2. Recommendations

- Extend the forecast horizon beyond 20-25 years. A long-range picture will be useful in better understanding and acting on the short-and medium-range regional choices.

- Identify critical regional corridors for future street, rail, and trail needs before more opportunities are lost. Without a strategy – which begins with a comprehensive look at long-range needs – future development may preclude certain options.

System Performance Measures

Ensure that performance measures better reflect diverse expectations for the transportation system.

- Identify additional system measures to augment traditional vehicle congestion calculations. The region doesn’t have all the measures in place to evaluate multimodal needs, system safety, and the adequacy of the existing infrastructure to support user expectations.

- Conduct time-of-day-evaluations (as appropriate) to include morning and mid-day peak periods. This information adds a valuable dimension to the understanding of travel flows and system impacts, and supports informed decision-making and investment processes.

- Realign expectations and LOS standards to ensure that current and future expectations of system performance are realistic. Consider the land use pattern the network is serving and other community values like maximum street width and funding priorities.

- Evaluate rural road measures specific to the unique demands and function of major rural roads to support appropriate evaluation and investment strategies.

Funding Measures

Support local funding efforts by leveraging limited resources and providing for a more informed decision-making process.

- Pursue policy solutions for local funding options to remove barriers that keep communities from generating local revenue for high priority transportation projects.

- Investigate equitable transportation development fees to help eliminate discrepancies between who pays for,
2. Recommendations

and who benefits from, capacity investments. Currently, Lacey, Olympia, Tumwater, and Yelm assess transportation development fees and Thurston County relies primarily on SEPA. Increased equity may have other benefits, such as supplying funds for retrofitting rural roads that now serve suburban commuter traffic, or improving consistency and predictability for the development community.

• Use innovative funding mechanisms, whether through finance tools or inter-governmental partnerships, to stretch transportation dollars a little further.
• Identify financial impacts of land use decisions on transportation, and factor those impacts into evaluation and decision-making processes.
• Develop appropriate benefit/cost analysis tools that allow comparative evaluation of various investment choices. Enhance local and regional decision-making, and ensure cost effective solutions are recognized when weighing difficult trade-offs.

System Efficiency Measures

Improve the overall operating efficiency of the existing system and minimize wasted capacity.

• Utilize transportation technology to improve the safety and efficiency of the transportation system, including transit, streets, rail, and trails.
• Increase operations coordination to decrease duplicated efforts, maximize communications and partnership opportunities, and stretch limited resources. This effort will bring together operations teams from across the region to evaluate what works, what could work better, and whether a region-wide approach to certain functions makes sense.
• Make intersections safer, simpler, and smarter using a mix of tools, technologies, and innovative designs. From roundabout designs that move more cars with fewer lanes to coordinated signal timing that regulates flow throughout a corridor, a strategy focused on intersections can relieve some of the region’s worst chokepoints.
• Pursue cost-effective retrofit and upgrade of facilities as a regional priority at the heart of preserving and improving system efficiency. An implementation strategy is needed to ensure that older bridges, streets, and roads receive timely attention.
2. Recommendations

Passenger Rail and Public Transportation

Develop the role that passenger rail will play in our transportation system, assessing the benefits and costs. Identify future options with their associated issues and opportunities, to move the region toward its preferred rail strategy. By association, examine the role that bus transportation plays in the region’s mass transit future.

Freight Mobility

Explore opportunities for regional coordination in supporting freight mobility. TRPC will convene regional freight interests to examine issues in freight modes like truck, rail, aviation, marine, and pipelines. Monitor development of the Washington Commerce Corridor concept under consideration at the legislative level. Participate as appropriate in analyses, discussions, and regional evaluations.

Regional Trail Strategy

Just like the hierarchy of a street network with its arterials, collectors and local access facilities, a comprehensive trail system encompasses principle arterials, important on-street connections and local access routes as part of an integrated system. The trail network serves recreational and health needs, and provides routes for commuters, visitors and people of all ages and incomes. It is a critical part of a multimodal system, connecting people and communities. The Thurston region is committed to an effective trail system, so requires a strategy to ensure that the pieces fit together, important corridors are identified and preserved, and the trails function seamlessly as part of the larger transportation system.

Transportation Outreach

How to bring more people into the transportation decision-making process at the most productive time is a constant challenge. How to do it in a way that enables people to provide informed input is even more challenging. How to maintain an effective public process that ensures people are heard – regardless of when or how they choose to participate – is harder still. From policymakers faced with tough decisions to citizens concerned about what is happening on their streets, an on-going outreach / input strategy and commitment to implementation is needed to broaden general awareness of transportation issues.
Regionally Significant Projects

The second part of the RTP recommendation deals with projects and project-specific studies and strategies. This is the traditional "RTP project list." It consists of regionally significant projects that have considerable impact on how the region’s transportation system functions. These projects are included in regional model analysis because they impact travel flow or traffic patterns. Typically, these are large projects that add substantial capacity to the system, create a major change in access, or add new programs or services.

Regionally significant projects must receive regional approval to be included in the RTP, and must be included in the RTP to be eligible to proceed. They are also subject to state and federal requirements for financial constraint and air quality conformity. Those same requirements do not apply to locally significant projects.

Locally Significant Projects

Locally significant projects are defined through the TIP, CFP, and TDP (Transit Development Plan) development processes at the local level. These are important projects that include such things as channelization, shoulder improvements, local connected streets, signalization or roundabouts or other intersection upgrades, minor widening or reconstruction, resurfacing, safety projects, bus replacements, fare equipment, sidewalks, Class II, III, or IV bike facilities, and technology investments specific to one agency. These are important projects. Responsibility for identifying, evaluating, and prioritizing these projects rests with local agencies. See Appendix B for more information about locally significant projects.

The regionally significant projects included in this recommendation address four basic categories of project:

- Streets, Roads, and Bridges
- Public Transportation
- Non-Motorized Facilities
- Transportation Technologies

Within each category, different kinds of projects reflect the differing modal needs presented by a 20-year regional forecast. The details for each type of project also differ, ranging from substantial detail for street and road projects to more general public transportation recommendations.

WSDOT Olympic Region projects are listed separately, although all projects work together to make the whole system function. These WSDOT projects must follow an additional state-wide process that differs from other project processes and are not financially constrained by this Plan.
Where provided, all costs are planning level estimates in constant 2000 dollars.

Streets, Roads, and Bridges

Streets, roads, and bridges provide essential service for most of the region’s transportation needs.

The Plan groups project recommendations into four areas: Capacity projects; construction of new connections and alignments; corridor studies and sub-area plans; and assessment areas. The strategy corridor concept established in the 2020 plan is retained in the 2025 RTP. Assessment areas, a new concept introduced in this Plan, identify places where the long-range regional modeling indicated congestion. TRPC and local agencies will analyze these areas to determine why they show congestion and identify appropriate solutions. Key intersections will be evaluated as part of any corridor study, assessment area or strategy corridor.

The recommendations address regionally significant projects only. Locally significant projects are referenced in Appendix B.

Every construction project must meet certain requirements before building begins. They must comply with local, state, and federal requirements such as environmental regulations, design standards, value engineering studies, eight-point access studies, and right-of-way acquisition. The project list does not describe these requirements, which are prerequisite to construction.

Table 2-1 provides quick reference to the regionally significant streets, roads, and bridges projects.

<table>
<thead>
<tr>
<th>Type</th>
<th>Table</th>
<th>Map</th>
</tr>
</thead>
<tbody>
<tr>
<td>Capacity Projects</td>
<td>Table 2-2, Pages 2-8 to 2-17</td>
<td>Map 2-1, Page 2-54</td>
</tr>
<tr>
<td>New Connections or Alignments</td>
<td>Table 2-3, Pages 2-18 to 2-23</td>
<td>Map 2-2, Page 2-55</td>
</tr>
<tr>
<td>Corridor Studies and Sub-Area Plans</td>
<td>Table 2-4, Pages 2-24 to 2-28</td>
<td>Map 2-3, Page 2-56</td>
</tr>
<tr>
<td>Assessment Areas</td>
<td>Table 2-5, Pages 2-29 to 2-33</td>
<td>Map 2-4, Pages 2-57</td>
</tr>
</tbody>
</table>
2. Recommendations

Table 2-2

Capacity Projects

<table>
<thead>
<tr>
<th>Project ID</th>
<th>Project Information – CAPACITY PROJECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>C1</td>
<td>One-Way Couplet Project</td>
</tr>
<tr>
<td>Agency: Lacey</td>
<td>Convert Pacific Avenue and Lacey Boulevard to a one-way couplet with roundabouts at either end.</td>
</tr>
<tr>
<td>Limits: Sleater-Kinney Road to east city limits</td>
<td></td>
</tr>
<tr>
<td>Estimated Cost ($1,000): $5,400</td>
<td></td>
</tr>
<tr>
<td>Notes: Project is fully funded and underway.</td>
<td></td>
</tr>
<tr>
<td>Project status:</td>
<td></td>
</tr>
<tr>
<td>Locally-adopted TIP or CFP</td>
<td>2020 RTP</td>
</tr>
<tr>
<td>*</td>
<td>*</td>
</tr>
</tbody>
</table>

C2	Sleater-Kinney Road/6th Avenue Realignment	
Agency: Lacey	Realign the Sleater-Kinney Road and 6th Avenue intersection, and reconfigure the travel lanes on 6th Avenue to yield two through lanes and auxiliary turn lanes. Overlap Sleater-Kinney Road from I-5 to Pacific Avenue.	
Limits: Sleater-Kinney Road to College Street (6th Avenue) and from I-5 to Pacific Avenue (Sleater-Kinney Road)		
Estimated Cost ($1,000): $2,102		
Notes: Project is fully funded and underway.		
Project status:		
Locally-adopted TIP or CFP	2020 RTP	New Project
*	*	*

C3	Yelm Highway Widening	
Agency: Lacey	Reconstruct Yelm Highway and widen from 2/3 lanes to 4/5 lanes, using medians for access management.	
Limits: College Street to Ruddell Road		
Estimated Cost ($1,000): $3,250		
Notes: Project is fully funded and underway.		
Project status:		
Locally-adopted TIP or CFP	2020 RTP	New Project
*	*	*
2. Recommendations

Table 2-2, continued

Capacity Projects

<table>
<thead>
<tr>
<th>Project ID</th>
<th>Project Information – CAPACITY PROJECTS</th>
</tr>
</thead>
</table>
| C4 | **4th / 5th Avenue Corridor and Bridge Project**
Reconstruct the 4th Avenue Bridge, widening it to three lanes. Project includes retrofit of 4th and 5th Avenue corridors to accommodate bridge reconfiguration, as well as Olympic Way and Harrison Avenue. Uphill side of bridge includes two two-lane roundabouts.
Agency: Olympia
Limits: Water Street to West Bay Drive
Estimated Cost ($1,000): $20,170
Notes: Project is fully funded and underway. Significant revenue for this project was secured prior to 2000 with a balance of $20,170 received after 2000. |
| C5 | **Tumwater Boulevard (Airdustrial Way) Widening**
Widen Tumwater Boulevard from 2/3 lanes to 4/5 lanes with roundabouts.
Agency: Tumwater
Limits: Capitol Boulevard to I-5
Estimated Cost ($1,000): $4,400
Notes: Project is fully funded and underway. |
| C6 | **Littlerock Road Widening**
Widen Littlerock Road from 2 lanes to 2/3 lanes from the south city limits to BPA power lines, and to 4 lanes from the BPA power lines to Trosper Road. Project includes signalization at Costco and a roundabout at Tumwater Boulevard.
Agency: Tumwater
Limits: 73rd Avenue to Trosper Road
Estimated Cost ($1,000): $4,230
Notes: Project is fully funded and underway. |
2. Recommendations

Table 2-2, continued
Capacity Projects

<table>
<thead>
<tr>
<th>Project ID</th>
<th>Project Information – CAPACITY PROJECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Elderberry Road Upgrade</td>
</tr>
<tr>
<td></td>
<td>Widen Elderberry Road from 2 lanes to 4/5 lanes.</td>
</tr>
<tr>
<td></td>
<td>Agency: County</td>
</tr>
<tr>
<td></td>
<td>Limits: SR 12 to 196th Avenue</td>
</tr>
<tr>
<td></td>
<td>Estimated Cost ($1,000): $167</td>
</tr>
<tr>
<td></td>
<td>Notes:</td>
</tr>
<tr>
<td>C7</td>
<td>Locally-adopted TIP or CFP 2020 RTP New Project</td>
</tr>
</tbody>
</table>

	Mud Bay Road Capacity Project 1
	Widen Mud Bay Road from 2 lanes to 4/5 lanes, with signalization.
	Agency: County
	Limits: Evergreen Parkway to Kaiser Road
	Estimated Cost ($1,000): $3,312
	Notes:
C8	Locally-adopted TIP or CFP 2020 RTP New Project

	Harrison Avenue (Mud Bay Road) Widening, Phase II
	Widen Harrison Avenue/Mud Bay Road from 2 lanes to 4/5 lanes, with channelization and signalization.
	Agency: Olympia
	Limits: Yauger Way to Kaiser Road
	Estimated Cost ($1,000): $4,975
	Notes:
C9	Locally-adopted TIP or CFP 2020 RTP New Project
2. Recommendations

Table 2-2, continued
Capacity Projects

<table>
<thead>
<tr>
<th>Project ID</th>
<th>Project Information – CAPACITY PROJECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>C10</td>
<td>Yelm Highway Capacity Project 1</td>
</tr>
<tr>
<td></td>
<td>Widen Yelm Highway from 2 lanes to 4/5 lanes between Henderson Boulevard and Boulevard Road, and add second eastbound through lane between Boulevard Road and Rich Road. Bring entire segment up to urban arterial standards.</td>
</tr>
<tr>
<td></td>
<td>Agency: County & Olympia</td>
</tr>
<tr>
<td></td>
<td>Limits: Henderson Boulevard to Rich Road</td>
</tr>
<tr>
<td></td>
<td>Estimated Cost ($1,000): $6,500</td>
</tr>
<tr>
<td></td>
<td>Notes:</td>
</tr>
<tr>
<td></td>
<td>Project status:</td>
</tr>
<tr>
<td></td>
<td>Locally-adopted TIP or CFP</td>
</tr>
<tr>
<td></td>
<td>*</td>
</tr>
<tr>
<td>C11</td>
<td>Carpenter Road Capacity and Safety Project</td>
</tr>
<tr>
<td></td>
<td>Widen Carpenter Road and realign intersections at Alanna Drive and 14th Avenue to true “T” intersections.</td>
</tr>
<tr>
<td></td>
<td>Agency: Lacey</td>
</tr>
<tr>
<td></td>
<td>Limits: Pacific Avenue to Shady Lane</td>
</tr>
<tr>
<td></td>
<td>Estimated Cost ($1,000): $2,073</td>
</tr>
<tr>
<td></td>
<td>Notes:</td>
</tr>
<tr>
<td></td>
<td>Project status:</td>
</tr>
<tr>
<td></td>
<td>Locally-adopted TIP or CFP</td>
</tr>
<tr>
<td></td>
<td>*</td>
</tr>
<tr>
<td>C12</td>
<td>Marvin Road Widening</td>
</tr>
<tr>
<td></td>
<td>Widen Marvin Road from 2 lanes to 2 lanes with auxiliary lanes, reserving sufficient ROW for ultimate 5 lane configuration to Willamette Drive.</td>
</tr>
<tr>
<td></td>
<td>Agency: Lacey</td>
</tr>
<tr>
<td></td>
<td>Limits: Britton Parkway to north city limit</td>
</tr>
<tr>
<td></td>
<td>Estimated Cost ($1,000): $1,792</td>
</tr>
<tr>
<td></td>
<td>Notes:</td>
</tr>
<tr>
<td></td>
<td>Project status:</td>
</tr>
<tr>
<td></td>
<td>Locally-adopted TIP or CFP</td>
</tr>
<tr>
<td></td>
<td>*</td>
</tr>
</tbody>
</table>
2. Recommendations

Table 2-2, continued

Capacity Projects

<table>
<thead>
<tr>
<th>Project ID</th>
<th>Project Information – CAPACITY PROJECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Rainier Road Widening Inside UGA</td>
</tr>
<tr>
<td>C13</td>
<td>Widen Rainier Road from 2 lanes to 4/5 lanes.</td>
</tr>
<tr>
<td></td>
<td>Agency: Lacey</td>
</tr>
<tr>
<td></td>
<td>Limits: Yelm Highway to Rainier Loop</td>
</tr>
<tr>
<td></td>
<td>Estimated Cost ($1,000): $1,347</td>
</tr>
<tr>
<td>Notes:</td>
<td></td>
</tr>
<tr>
<td>Project status:</td>
<td>Locally-adopted TIP or CFP</td>
</tr>
<tr>
<td></td>
<td>*</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Project ID</th>
<th>Project Information – CAPACITY PROJECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>C14</td>
<td>Yelm Highway Capacity Project 3</td>
</tr>
<tr>
<td></td>
<td>Widen Yelm Highway from 2 lanes to 4/5 lanes, with a center median as appropriate to manage access and capacity.</td>
</tr>
<tr>
<td></td>
<td>Agency: Lacey</td>
</tr>
<tr>
<td></td>
<td>Limits: Ruddell Road to east city limits</td>
</tr>
<tr>
<td></td>
<td>Estimated Cost ($1,000): $2,332</td>
</tr>
<tr>
<td>Notes:</td>
<td></td>
</tr>
<tr>
<td>Project status:</td>
<td>Locally-adopted TIP or CFP</td>
</tr>
<tr>
<td></td>
<td>*</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Project ID</th>
<th>Project Information – CAPACITY PROJECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>C15</td>
<td>Martin Way and I-5 Interchange Improvements, Phase I</td>
</tr>
<tr>
<td></td>
<td>Widen Martin Way to provide for future dual left turn lanes.</td>
</tr>
<tr>
<td></td>
<td>Agency: Lacey & WSDOT</td>
</tr>
<tr>
<td></td>
<td>Limits: Martin Way at I-5 (Exit 109), from southbound off-ramps to northbound off-ramps</td>
</tr>
<tr>
<td></td>
<td>Estimated Cost ($1,000): $1,600</td>
</tr>
<tr>
<td>Notes:</td>
<td>Project phase funded through WSDOT.</td>
</tr>
<tr>
<td>Project status:</td>
<td>Locally-adopted TIP or CFP</td>
</tr>
<tr>
<td></td>
<td>*</td>
</tr>
</tbody>
</table>
Table 2-2, continued
Capacity Projects

<table>
<thead>
<tr>
<th>Project ID</th>
<th>Project Information – CAPACITY PROJECTS</th>
</tr>
</thead>
</table>
| C16 | **Martin Way and I-5 Interchange Improvements, Phase 2**
Widen I-5 off-ramps to provide for dual left turn lanes on Martin Way.
Agency: Lacey & WSDOT
Limits: I-5 at Martin Way (Exit 109), southbound and northbound off-ramps
Estimated Cost ($1,000): $3,109
Notes: |
| Project status: | Locally-adopted TIP or CFP | 2020 RTP | New Project |
| C17 | **Fones Road Widening, Phase 1**
Widen Fones Road from 2 lanes to 4/5 lanes.
Agency: Olympia
Limits: Pacific Avenue to 18th Avenue
Estimated Cost ($1,000): $4,930
Notes: Funding is secured for the engineering and design phase of this project. |
| Project status: | Locally-adopted TIP or CFP | 2020 RTP | New Project |
| C18 | **18th Avenue (Fones Road) Widening, Phase 2**
Widen 18th Avenue to provide 2 left turn lanes.
Agency: Olympia
Limits: Fones Road (at signal) to Hoffman Road
Estimated Cost ($1,000): $1,307
Notes: |
| Project status: | Locally-adopted TIP or CFP | 2020 RTP | New Project |
Table 2-2, continued

Capacity Projects

<table>
<thead>
<tr>
<th>Project ID</th>
<th>Project Information – CAPACITY PROJECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>C19</td>
<td>Old Highway 99 Widening 1
Widen Old Highway 99 from 2 lanes to 4/5 lanes.
Agency: Tumwater
Limits: Henderson Boulevard to 79th Avenue
Estimated Cost ($1,000): $1,300
Notes: Locally-adopted TIP or CFP</td>
</tr>
<tr>
<td>C20</td>
<td>Old Highway 99 Widening 2
Widen Old Highway 99 from 2 lanes to 4/5 lanes.
Agency: Tumwater
Limits: 73rd Avenue to Henderson Boulevard
Estimated Cost ($1,000): $2,000
Notes: Locally-adopted TIP or CFP</td>
</tr>
<tr>
<td>C21</td>
<td>Yelm Avenue West Widening
Widen to adopted urban arterial standards.
Agency: Yelm
Limits: SR 510/SR 507 to Solberg
Estimated Cost ($1,000): $1,020
Notes: Locally-adopted TIP or CFP</td>
</tr>
</tbody>
</table>
Table 2-2, continued
Capacity Projects

<table>
<thead>
<tr>
<th>Project ID</th>
<th>Project Information – CAPACITY PROJECTS</th>
</tr>
</thead>
</table>
| **C22** Old Hwy 99 Rural Capacity Project
Widen Old Hwy 99 from 2 lanes to 4/5 lanes.
Agency: County
Limits: SR 12 to Grand Mound’s south Urban Growth Boundary line
Estimated Cost ($1,000): $2,130
Notes: | |
| **C23** Pacific Avenue Capacity Project
Widen Pacific Avenue from 2 lanes to 4/5 lanes.
Agency: County
Limits: Union Mills Road to Marvin Road
Estimated Cost ($1,000): $5,802
Notes: | |
| **C24** Rich Road Capacity Project
Widen Rich Road from 2 lanes to 4 lanes.
Agency: County
Limits: Yelm Highway to Rixie Road
Estimated Cost ($1,000): $1,846
Notes: | |
2. Recommendations

Table 2-2, continued

Capacity Projects

<table>
<thead>
<tr>
<th>Project ID</th>
<th>Project Information – CAPACITY PROJECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>C25</td>
<td>Yelm Highway Capacity Project 4</td>
</tr>
<tr>
<td></td>
<td>Widen Yelm Highway from 2 lanes to 4/5 lanes.</td>
</tr>
<tr>
<td></td>
<td>Agency: County</td>
</tr>
<tr>
<td></td>
<td>Limits: East Lacey city limits to vicinity of the terminus under consideration in the Marvin Road Extension corridor study (S8)</td>
</tr>
<tr>
<td></td>
<td>Estimated Cost ($1,000): $10,127</td>
</tr>
<tr>
<td></td>
<td>Notes:</td>
</tr>
<tr>
<td>Project status:</td>
<td>Locally-adopted TIP or CFP</td>
</tr>
<tr>
<td></td>
<td>*</td>
</tr>
</tbody>
</table>

C26	Britton Parkway, Phase II		
	Add one more through lane in each direction of Britton Parkway as needed to accommodate growth, based on original corridor design.		
	Agency: Lacey		
	Limits: Marvin Road to West Carpenter Extension		
	Estimated Cost ($1,000): $2,100		
	Notes: Project will be privately funded as a condition of development approval.		
Project status:	Locally-adopted TIP or CFP	2020 RTP	New Project
	*		

C27	Black Lake Boulevard Widening		
	Widen Black Lake Boulevard from 2 lanes to 4 lanes.		
	Agency: Tumwater & Olympia		
	Limits: Mottman Road to Black Lake-Belmore Road SW		
	Estimated Cost ($1,000): $5,781		
	Notes:		
Project status:	Locally-adopted TIP or CFP	2020 RTP	New Project
	*		
Table 2-2, continued
Capacity Projects

<table>
<thead>
<tr>
<th>Project ID</th>
<th>Project Information – CAPACITY PROJECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>C28</td>
<td>Carpenter Road Widening</td>
</tr>
<tr>
<td></td>
<td>Widen Carpenter Road to add vehicle travel lanes, sidewalks, and bike lanes.</td>
</tr>
<tr>
<td></td>
<td>Agency: Lacey</td>
</tr>
<tr>
<td></td>
<td>Limits: Pacific Avenue to Britton Parkway</td>
</tr>
<tr>
<td></td>
<td>Estimated Cost ($1,000): $13,900</td>
</tr>
<tr>
<td></td>
<td>Notes: Feasibility study (S1) concluded that adding extra capacity to Carpenter Road is the preferred alternative for addressing current and future mobility needs. Funding is secured for design, during which time final lane configuration and standards will be determined. Project does not include any change in highway access at Carpenter Road. See projects S1 and S3.</td>
</tr>
<tr>
<td></td>
<td>Localy-adopted TIP or CFP</td>
</tr>
<tr>
<td>C29</td>
<td>Tumwater Boulevard – Bridge Widening</td>
</tr>
<tr>
<td></td>
<td>Increase travel lanes on Tumwater Boulevard bridge over I-5 from 3 lanes to 4, with modifications as needed to the existing ramps.</td>
</tr>
<tr>
<td></td>
<td>Agency: Tumwater</td>
</tr>
<tr>
<td></td>
<td>Limits: Tumwater Boulevard bridge</td>
</tr>
<tr>
<td></td>
<td>Estimated Cost ($1,000): $6,000</td>
</tr>
<tr>
<td></td>
<td>Notes: Additional capacity is being added to Tumwater Boulevard east of the bridge to address current and future mobility needs (Project C5). Widening of the bridge will ensure the same capacity as the rest of the arterial east of the bridge and avoid creation of a chokepoint.</td>
</tr>
<tr>
<td></td>
<td>Localy-adopted TIP or CFP</td>
</tr>
<tr>
<td>C30</td>
<td>Marvin Road Interchange Phase 2</td>
</tr>
<tr>
<td></td>
<td>Complete construction of the urban interchange.</td>
</tr>
<tr>
<td></td>
<td>Agency: Lacey</td>
</tr>
<tr>
<td></td>
<td>Limits: Marvin Road at I-5</td>
</tr>
<tr>
<td></td>
<td>Estimated Cost ($1,000): $18,600</td>
</tr>
<tr>
<td></td>
<td>Notes: Project was originally included in the 2020 Regional Transportation Plan as a WSDOT project, but was inadvertently dropped in the 2025 update.</td>
</tr>
<tr>
<td></td>
<td>Localy-adopted TIP or CFP</td>
</tr>
<tr>
<td>C31</td>
<td>Boulevard Road Corridor Project</td>
</tr>
<tr>
<td></td>
<td>Add three roundabouts, bike lanes, sidewalks, and other urban design features to improve multi-modal safety, efficiency, and mobility.</td>
</tr>
<tr>
<td></td>
<td>Agency: Olympia</td>
</tr>
<tr>
<td></td>
<td>Limits: 18th Avenue to 45th Avenue</td>
</tr>
<tr>
<td></td>
<td>Estimated Cost ($1,000): $17,850</td>
</tr>
<tr>
<td></td>
<td>Notes: Project recommendations result from the Boulevard Road Corridor Study (see S2).</td>
</tr>
<tr>
<td></td>
<td>Localy-adopted TIP or CFP</td>
</tr>
</tbody>
</table>
2. Recommendations

Table 2-3
New Connections or Alignments

<table>
<thead>
<tr>
<th>Project ID</th>
<th>Project Information</th>
<th>Locally-adopted TIP or CFP</th>
<th>2020 RTP</th>
<th>New Project</th>
</tr>
</thead>
<tbody>
<tr>
<td>A1</td>
<td>Mullen Road Extension</td>
<td>Construction of new major collector.</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>Agency: Lacey</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Limits: College Street to Ruddell Road</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Estimated Cost ($1,000): $3,627</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Notes: Right-of-way has already been secured.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Project status:</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A2</td>
<td>College Street NE Extension</td>
<td>Extend College Street NE to 15th Avenue NE.</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>Agency: Lacey</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Limits: 6th Avenue NE to 15th Avenue NE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Estimated Cost ($1,000): $1,554</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Notes: Right-of-way has already been secured.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Project status:</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td>A3</td>
<td>Decatur Street Connection</td>
<td>Connect Decatur Street to Caton Way with a 2 lane facility.</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>Agency: Olympia</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Limits: South end of Decatur Street to Carriage Street / Caton Way</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Estimated Cost ($1,000): $1,107</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Notes: Outstanding issues for this project will be resolved by City of Olympia in coordination with TRPC to ensure consistency is maintained between local and regional plans. Any changes will be reflected in plan updates or amendments, as appropriate. The City of Olympia has determined any decision on whether to open Decatur Street and 16th Avenue as through vehicle connections will not be made until the Westside Access and Traffic Circulation Study is complete. (A bicycle, pedestrian, emergency vehicle access connection is planned, and included in the local TIP, but this is not the general purpose, two-lane facility described by this RTP project.)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Project status:</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Table 2-3, continued

New Connections or Alignments

<table>
<thead>
<tr>
<th>Project ID</th>
<th>Project Information</th>
<th>Project status</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CONSTRUCTION OF NEW CONNECTIONS OR ALIGNMENTS</td>
<td>Locally-adopted TIP or CFP</td>
</tr>
<tr>
<td>A4</td>
<td>Log Cabin Road Extension</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Extend Log Cabin Road from Boulevard Road to 37th Avenue with a 2 lane major collector boulevard.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Agency: Olympia</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Limits: Boulevard Road at Log Cabin Road, to 37th Avenue</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Estimated Cost ($1,000): $2,950</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Notes: Costs identified reflect only City of Olympia costs, estimated over a 12-year period. The majority of the project will be privately funded.</td>
<td></td>
</tr>
<tr>
<td>A5</td>
<td>Olympia Avenue Extension</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Add new connection between Thurston Avenue and East Bay Drive via Marine Drive as identified in the North Downtown EIS.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Agency: Olympia & Port of Olympia</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Limits: East Bay Drive to Thurston Avenue</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Estimated Cost ($1,000): $1,014</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Notes:</td>
<td></td>
</tr>
<tr>
<td>A6</td>
<td>Runway 17/35 Roadway Modifications</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Modify roadway alignments south of airport to accommodate extension of Runway 17/35. Realignments will be made to 88th Avenue, Case Road, and Tilley Road.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Agency: Port of Olympia, Tumwater, County, & WSDOT</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Limits: Vicinity 93rd Avenue to 88th Avenue</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Estimated Cost ($1,000): $2,923</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Notes: Project to be funded with FAA revenue.</td>
<td></td>
</tr>
</tbody>
</table>
Table 2-3, continued
New Connections or Alignments

<table>
<thead>
<tr>
<th>Project ID</th>
<th>Project Information</th>
<th>Locally-adopted TIP or CFP</th>
<th>2020 RTP</th>
<th>New Project</th>
</tr>
</thead>
<tbody>
<tr>
<td>A7 Tyee Drive Extension</td>
<td>Extend Tyee Drive south, from Home Depot to Israel Road. The extent of this frontage road was determined as part of the Trosper Road Sub-Area Study.</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>Agency: Tumwater</td>
<td>Limits: Home Depot to Israel Road</td>
<td>Estimated Cost ($1,000): $1,300</td>
<td>Notes: Project will be privately funded. This project is part of a larger frontage road project identified in the 2020 RTP as extending all the way to Tumwater Boulevard.</td>
<td></td>
</tr>
<tr>
<td>Project status:</td>
<td>Locally-adopted TIP or CFP</td>
<td>2020 RTP</td>
<td>New Project</td>
<td></td>
</tr>
<tr>
<td>A8 Trosper Road/I-5 Interchange Improvements</td>
<td>Construct interchange improvements as determined by study.</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>Agency: Tumwater</td>
<td>Limits: Vicinity of Trosper Road at I-5</td>
<td>Estimated Cost ($1,000): $2,400</td>
<td>Notes: Work is underway with Tumwater’s Capitol Boulevard Sub-Area Transportation Study to identify an effective way of improving traffic flow on Trosper Road at I-5. Construction project will reflect the outcome of that study. Cost estimate is likely to change.</td>
<td></td>
</tr>
<tr>
<td>Project status:</td>
<td>Locally-adopted TIP or CFP</td>
<td>2020 RTP</td>
<td>New Project</td>
<td></td>
</tr>
<tr>
<td>A9 510/507 Loop - North Section (Y3)</td>
<td>Construct new 2/3 lane, limited access route north of the city providing freight access to the city’s industrial area and an alternate route for through-traffic.</td>
<td>*</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>Agency: WSDOT</td>
<td>Limits: SR 510 near Mud Run Road to SR 507 near McKenna Road</td>
<td>Estimated Cost ($1,000):</td>
<td>Notes: This project has moved fully to a WSDOT project (O11) and is no longer included on the list of local projects. See project O9 for updated information.</td>
<td></td>
</tr>
</tbody>
</table>
2. Recommendations

Table 2-3, continued

New Connections or Alignments

<table>
<thead>
<tr>
<th>Project ID</th>
<th>Project Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>CONSTRUCTION OF NEW CONNECTIONS OR ALIGNMENTS</td>
<td></td>
</tr>
<tr>
<td>Project Information</td>
<td>Locally-adopted TIP or CFP</td>
</tr>
<tr>
<td>Project status:</td>
<td></td>
</tr>
<tr>
<td>Construction of new alignments:</td>
<td></td>
</tr>
<tr>
<td>A10</td>
<td>510/507 Loop-South Section (Y2)</td>
</tr>
<tr>
<td>Agency:</td>
<td></td>
</tr>
<tr>
<td>Limits:</td>
<td>SR 507 near George Road to SR 507 near Grove Road</td>
</tr>
<tr>
<td>Estimated Cost ($1,000):</td>
<td>$8,800</td>
</tr>
<tr>
<td>Notes:</td>
<td>Preliminary engineering and environmental assessment are complete. This project is also included as part of (O10) on the WSDOT list.</td>
</tr>
<tr>
<td>Project status:</td>
<td></td>
</tr>
<tr>
<td>Construction of new alignments:</td>
<td></td>
</tr>
<tr>
<td>A11</td>
<td>Yauger Way Extension</td>
</tr>
<tr>
<td>Agency:</td>
<td>Olympia & WSDOT</td>
</tr>
<tr>
<td>Limits:</td>
<td>US 101 vicinity of Capital Mall Drive</td>
</tr>
<tr>
<td>Estimated Cost ($1,000):</td>
<td>$10,000</td>
</tr>
<tr>
<td>Notes:</td>
<td>Initial needs assessment for this project was conducted as part of the value engineering study for the US 101/Crosby Boulevard interchange widening project. The detailed Access Study is identified as a prerequisite project need in the studies section (S4). This project is also included as part of (O11) on the WSDOT list.</td>
</tr>
<tr>
<td>Project status:</td>
<td></td>
</tr>
<tr>
<td>Construction of new alignments:</td>
<td></td>
</tr>
<tr>
<td>A12</td>
<td>Hogum Bay Road Truck Route</td>
</tr>
<tr>
<td>Agency:</td>
<td>Lacey</td>
</tr>
<tr>
<td>Limits:</td>
<td>Willamette Drive to Hawks Prairie Road Extension</td>
</tr>
<tr>
<td>Estimated Cost ($1,000):</td>
<td>$2,400</td>
</tr>
<tr>
<td>Notes:</td>
<td></td>
</tr>
<tr>
<td>Project status:</td>
<td></td>
</tr>
</tbody>
</table>
2. Recommendations

Table 2-3, continued

New Connections or Alignments

<table>
<thead>
<tr>
<th>Project ID</th>
<th>Project Information</th>
<th>CONSTRUCTION OF NEW CONNECTIONS OR ALIGNMENTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>A13</td>
<td>Hawks Prairie Road Extension</td>
<td></td>
</tr>
<tr>
<td></td>
<td>New collector, part of the Hawks Prairie collector grid.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Agency: Lacey</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Limits: Hogum Bay Road to Willamette Drive</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Estimated Cost ($1,000): $1,250</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Notes: Locally-adopted TIP or CFP 2020 RTP New Project</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Project status:</td>
<td></td>
</tr>
</tbody>
</table>

A14	**New South Tumwater Connector**	
	Construct new frontage road connector between Israel Road	
	and Black Hills Village, as identified in the Southwest	
	Tumwater sub-area plan. Alignment has not yet been	
	determined.	
	Agency: Tumwater	
	Limits: Israel Road to Black Hills Village	
	Estimated Cost ($1,000): $7,800	
	Notes: Project will be privately funded. Connection	
	relies on the smaller, neighborhood connections also	
	identified in the sub-area plan to function as	
	intended.	
	Project status:	

A15	Evergreen Parkway Repair and Upgrade	
	Intersection control at McCann Plaza and at Overhulse,	
	with evaluation of lane configuration options for the	
	corridor.	
	Agency: The Evergreen State College	
	Limits: Campus entrance at McCann Plaza to the	
	County line.	
	Estimated Cost ($1,000): $1,350	
	Notes: Project is fully funded by The Evergreen State	
	State College.	
	Project status:	

A16	Stevens Avenue Connection (Y4)	
	Construct new street connection, including railroad	
	crossing at Railroad Avenue. Street will be built to	
	adopted collector standards.	
	Agency: Yelm	
	Limits: 1st Street to Edwards Street	
	Estimated Cost ($1,000): $965	
	Notes: City has completed feasibility study so	
	project can be amended into the RTP as a construction	
	project. Project helps to complete the local grid north	
	and east of SR 510/SR 507.	
	Project status:	
Table 2-3, continued

New Connections or Alignments

<table>
<thead>
<tr>
<th>Project ID</th>
<th>Project Information</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CONSTRUCTION OF NEW CONNECTIONS OR ALIGNMENTS</td>
</tr>
</tbody>
</table>
| A17 | Thurston Highlands “Tahoma Boulevard”
New collector to be constructed as a part of the Thurston Highlands development project.
Agency: Yelm
Limits: SR 510 to SR 507
Estimated Cost ($1,000): Privately funded
Notes: Provides essential connectivity in the southwest quadrant of Yelm. |
| | Locally-adopted TIP or CFP | 2020 RTP | New Project |
| A18 | Lacey Hawks Prairie Business District Corridors
Construct the collector grid needed to provide circulation.
Agency: Lacey
Limits: Britton Parkway and I-5
Estimated Cost ($1,000): $9,600
Notes: Feasibility analysis has demonstrated the need for these corridors. Funding will come from a special Jobs Development Fund grant program administered by the state. |
| | Locally-adopted TIP or CFP | 2020 RTP | New Project |
| A19 | Kaiser Road Connection
Extend Kaiser Road south and east to Black Lake Boulevard.
Agency: Olympia
Limits: Kaiser Road to Black Lake Boulevard
Estimated Cost ($1,000): Privately funded
Notes: Project has been in Olympia’s long-range plan, and will provide additional connectivity in the southwest part of the city and its urban growth area. |
| | Locally-adopted TIP or CFP | 2020 RTP | New Project |
| A20 | E Street Connection
Construct a new east-west connection from Cleveland Avenue/Yelm Highway through the Tumwater valley to E Street at Capitol Boulevard.
Agency: Tumwater
Limits: Cleveland Avenue/Yelm Highway to E Street
Estimated Cost ($1,000): $5,700
Notes: Project is a result of the Custer Way Strategy Area Plan, a feasibility study in the 2025 RTP (project S6) intended to identify ways of improving mobility in the vicinity of Custer Way and Capitol Way. |
| | Locally-adopted TIP or CFP | 2020 RTP | New Project |
2. Recommendations

Table 2-4

Corridor Studies and Sub-Area Plans

<table>
<thead>
<tr>
<th>Project ID</th>
<th>Project Information</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CORRIDOR STUDIES & SUB-AREA PLANS</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Project ID</th>
<th>Agency</th>
<th>Estimated Cost ($1,000)</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>S1</td>
<td>Lacey</td>
<td>$1,000</td>
<td>Study was completed and in 2005 the Carpenter Road Widening project was added to this plan (C28).</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Study is fully funded.</td>
</tr>
<tr>
<td>S2</td>
<td>Olympia</td>
<td>$52</td>
<td>This project is also included as part of (O12) on the WSDOT list.</td>
</tr>
<tr>
<td>S3</td>
<td>Lacey & WSDOT</td>
<td>$500</td>
<td></td>
</tr>
</tbody>
</table>

Carpenter Road Corridor Study
Feasibility assessment for improving mobility on Carpenter Road, between Martin Way and Pacific Avenue.

Boulevard Road Corridor Study
Develop a mobility strategy for Boulevard Road emphasizing intersection projects and access management to improve through movement while maintaining neighborhood access character of road.

Carpenter Road Interchange Feasibility Study
Feasibility study for adding a new interstate highway interchange at Carpenter Road and I-5.
2. Recommendations

Table 2-4, continued

Corridor Studies and Sub-Area Plans

<table>
<thead>
<tr>
<th>Project ID</th>
<th>Project Information</th>
<th>Project status</th>
</tr>
</thead>
<tbody>
<tr>
<td>S4</td>
<td>West Olympia Access Study (Yauger Way Extension, Phase I)</td>
<td>Locally-adopted TIP or CFP</td>
</tr>
<tr>
<td></td>
<td>Strategy and pre-plan for routing through-traffic around Black Lake / Cooper Point intersection between US 101 and Yauger Way.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Agency: Olympia & WSDOT</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Estimated Cost ($1,000): $460</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Notes: This study is a prerequisite for the Yauger Way Extension project (A11). This study is also included in (O10) on the WSDOT list.</td>
<td></td>
</tr>
<tr>
<td>S5</td>
<td>Grand Mound Transportation Study</td>
<td>Locally-adopted TIP or CFP</td>
</tr>
<tr>
<td></td>
<td>Identify short- and long-term freight mobility needs and access issues between the industrial areas of Grand Mound, I-5 and SR 12.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Agency: County</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Estimated Cost ($1,000): $250</td>
<td></td>
</tr>
<tr>
<td>S6</td>
<td>Custer Way Strategy Area Plan</td>
<td>Locally-adopted TIP or CFP</td>
</tr>
<tr>
<td></td>
<td>Evaluate options for improving mobility on Custer Way within the restricted urban segment between Capitol Boulevard and Cleveland Avenue.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Agency: Tumwater</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Estimated Cost ($1,000): $250</td>
<td></td>
</tr>
<tr>
<td>S7</td>
<td>26th Avenue/31st Avenue Extension – Connection Study</td>
<td>Locally-adopted TIP or CFP</td>
</tr>
<tr>
<td></td>
<td>Feasibility study for extending 26th Avenue from Sleater-Kinney Road to 31st Avenue, and 31st Avenue west to Carpenter Road and Marvin Road, including identification of approximate alignments needed to preserve the corridor for future connection if warranted.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Agency: Lacey and County</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Estimated Cost ($1,000): $250</td>
<td></td>
</tr>
</tbody>
</table>
Table 2-4, continued
Corridor Studies and Sub-Area Plans

<table>
<thead>
<tr>
<th>Project ID</th>
<th>Project Information</th>
</tr>
</thead>
</table>
| S8 | **Marvin Road Extension – Connection Study**
Feasibility study for extending Marvin Road south to Yelm Highway, including identification of approximate alignments needed to preserve the corridor for future connection if warranted.

Agency: Lacey & County
Estimated Cost ($1,000): $250

Notes: Locally-adopted TIP or CFP 2020 RTP New Project

Project status:
| | |
| S9 | **Draham/15th Avenue/12th Avenue Extension Feasibility Study**
Feasibility study to determine benefits to Martin Way and Lilly Road mobility by building a new connection between Lilly Road and Carpenter Road, identifying the alignment and design appropriate for such a connection if it is feasible.

Agency: Lacey, Olympia & County
Estimated Cost ($1,000): $250

Notes: Locally-adopted TIP or CFP 2020 RTP New Project

Project status:
| | |
| S10 | **12th/15th Avenue Corridor Study**
Feasibility study to determine benefits to Martin Way and Lilly Road mobility of building a new connection between Ensign Road and Lilly Road, identifying the alignment and design appropriate for such a connection if it is feasible.

Agency: Olympia & County
Estimated Cost ($1,000): $250

Notes: Locally-adopted TIP or CFP 2020 RTP New Project

Project status:
| | |
| S11 | **Rainier Road Extension – Connection Study**
Explore feasibility of extending Rainier Road from 138th Street to SR 507 with a new 2 lane connection to the intersection with Vail Cut-off Road, identifying approximate alignments needed to preserve the corridor for future connection if it is warranted.

Agency: County & Rainier
Estimated Cost ($1,000): $250

Notes: Long-range regional analysis suggests this connection can provide significant relief to mobility issues throughout the western parts of the City of Rainier.

Project status:
Table 2-4, continued
Corridor Studies and Sub-Area Plans

<table>
<thead>
<tr>
<th>Project ID</th>
<th>Project Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>S12</td>
<td>Ensign Connector / Hospital Access Study
Study to assess feasibility and costs/benefits of a new 2 lane minor arterial connection between Martin Way (at Ensign) and Pacific Avenue (west of I-5 southbound off-ramps).
Agency: Olympia
Estimated Cost ($1,000): $250
Notes: Long-range regional analysis suggests this connection can provide improved mobility for the Fones Road/Pacific Avenue intersection, Pacific Avenue/Lilly Road intersection, and Lilly Road/Martin Way intersection.</td>
</tr>
<tr>
<td></td>
<td>Locally-adopted TIP or CFP</td>
</tr>
<tr>
<td>S13</td>
<td>Southwest Urban Sub-Area Plan
Identify issues and an implementation strategy for improving connectivity in the southwest urban area, including portions of Tumwater, unincorporated Thurston County, and Olympia. Intent is to identify ways of improving access and mobility on local streets to reduce reliance on Interstate 5 and US 101, and to minimize impact on local travel as congestion on those two highways increases. Initial focus area is between I-5, US 101, and Black Lake.
Agency: Tumwater, County & Olympia
Estimated Cost ($1,000): $250
Notes: Long-range regional analysis suggests that future capacity constraints on I-5 and US 101 will generate more pressure on local streets in this quadrant of the urban area and that a coordinated strategy for improving connectivity in this area will benefit regional mobility.</td>
</tr>
<tr>
<td></td>
<td>Locally-adopted TIP or CFP</td>
</tr>
<tr>
<td>S14</td>
<td>Airport South Sub-Area Plan
Evaluate issues and options associated with airport runway extension and roadway realignment and land use in the area south of the airport, to at least 93rd Avenue, and roughly between I-5 and Old Highway 99.
Agency: Tumwater, County, Port of Olympia & WSDOT
Estimated Cost ($1,000): $250
Notes: Recent revisions to the Port’s Airport Layout Plan will result in changes to the street network south of the airport. The sub-area plan will assess the impacts of those changes on current and future land use to validate established planning and growth assumptions for the while urban area south of the airport.</td>
</tr>
<tr>
<td></td>
<td>Locally-adopted TIP or CFP</td>
</tr>
</tbody>
</table>
2. Recommendations

Table 2-4, continued

Corridor Studies and Sub-Area Plans

<table>
<thead>
<tr>
<th>Project ID</th>
<th>Project Information</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>CORRIDOR STUDIES & SUB-AREA PLANS</td>
</tr>
<tr>
<td></td>
<td>College Street Corridor Study</td>
</tr>
<tr>
<td>S15</td>
<td>Evaluate options for improving mobility along the College Street corridor south of the one-way couplet, with special emphasis on access management, pedestrian safety, intersection treatments, and corridor aesthetics. From Lacey Boulevard to 37th Avenue.</td>
</tr>
<tr>
<td></td>
<td>Agency: Lacey</td>
</tr>
<tr>
<td></td>
<td>Estimated Cost ($1,000): $35</td>
</tr>
<tr>
<td></td>
<td>Notes: This is a designated strategy corridor, meaning that the ability to add capacity is restricted due to adjacent land uses and existing roadway cross-sections. This study will explore options for improving mobility without creating additional travel lanes.</td>
</tr>
<tr>
<td></td>
<td>Project status: Locally-adopted TIP or CFP 2020 RTP New Project</td>
</tr>
<tr>
<td></td>
<td>Old Highway 99 – Tenino to I-5 Corridor Study</td>
</tr>
<tr>
<td>S16</td>
<td>Evaluate the Old Highway 99 corridor between Tenino and Interstate 5 to identify infrastructure capacity and other investments necessary to accommodate projected industrial growth in the vicinity of Tenino.</td>
</tr>
<tr>
<td></td>
<td>Agency: Tenino</td>
</tr>
<tr>
<td></td>
<td>Estimated Cost ($1,000): $15</td>
</tr>
<tr>
<td></td>
<td>Notes: Results of corridor study will determine if subsequent construction projects are warranted and if so, when.</td>
</tr>
<tr>
<td></td>
<td>Project status: Locally-adopted TIP or CFP 2025 RTP New Project</td>
</tr>
<tr>
<td></td>
<td>Reservation Road / SR 510 / Yelm Highway Feasibility Study</td>
</tr>
<tr>
<td>S17</td>
<td>Determine appropriate short- and long-range strategies to improve safety and mobility at the intersections of Reservation Road, SR 510, and Yelm Highway.</td>
</tr>
<tr>
<td></td>
<td>Agency: Nisqually Indian Tribe & County</td>
</tr>
<tr>
<td></td>
<td>Limits: SR 510, between Reservation Road and Yelm Highway</td>
</tr>
<tr>
<td></td>
<td>Estimated Cost ($1,000): $250</td>
</tr>
<tr>
<td></td>
<td>Notes: Study is necessitated by increasing concerns about safety and mobility in this area.</td>
</tr>
<tr>
<td></td>
<td>Project status: Locally-adopted TIP or CFP 2025 RTP New Project</td>
</tr>
<tr>
<td></td>
<td>Regional High Capacity Transportation Study</td>
</tr>
<tr>
<td>S18</td>
<td>Conduct a detailed evaluation of existing and potential modes of travel, the interaction between highway and local networks, and the ability of transportation technologies to improve operating efficiency of highways, streets, and interchange ramps.</td>
</tr>
<tr>
<td></td>
<td>Agency: TRPC</td>
</tr>
<tr>
<td></td>
<td>Limits: Not applicable</td>
</tr>
<tr>
<td></td>
<td>Estimated Cost ($1,000): $500</td>
</tr>
<tr>
<td></td>
<td>Notes: This study was identified by the Passenger Rail Work Group as a priority follow-up measure. It has as its origin the inclusion of regional rail issues as an emphasis area in the 2025 RTP.</td>
</tr>
<tr>
<td></td>
<td>Project status: Locally-adopted TIP or CFP 2020 RTP New Project</td>
</tr>
</tbody>
</table>
2. Recommendations

Table 2-5

Assessment Areas

<table>
<thead>
<tr>
<th>Project ID</th>
<th>Project Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1</td>
<td>Rainier Road</td>
</tr>
<tr>
<td></td>
<td>Evaluate issues with rural capacities, rural LOS, rural TAZ structure, relation between rural roads and rural land use expectations.</td>
</tr>
<tr>
<td></td>
<td>Agency: County</td>
</tr>
<tr>
<td></td>
<td>Limits: Rainier Road, from Lacey city limits south to Military Road</td>
</tr>
<tr>
<td></td>
<td>Notes: This is a priority regional follow-up corridor. Long-range regional analysis suggests a combination of factors may be responsible for what appears to be significant corridor congestion in the future. Some factors may relate to the forecast and modeling process itself, while others may reflect actual projected volumes resulting from land use and growth patterns. The latter factors need to be reconciled with regional expectations for mobility and congestion levels on this essential north-south rural corridor.</td>
</tr>
</tbody>
</table>

L2	**Rural Corridor Strategy**
	Evaluate mobility issues associated with rural corridors, including LOS standards and expectations, design capacities, maximum street width, and associated issues like cost, environmental impact, and safety.
	Agency: County
	Limits: Various
	Notes: As noted in (L1), long-range regional analysis suggests the potential for significant rural corridor congestion in the future, although additional local analysis of specific factors is needed to validate this indication. Similar forecast conditions were identified on Meridian Road, Old Pacific Highway, Old Highway 99, and Tilley Road, with the worst conditions on Rainier Road. Focus on Rainier Road as a pilot project for this study, in conjunction with the Rainier Road Capacity Issues study. However, outcome of this effort will have implications for other rural roads with forecasted future congestion issues.

L3	**Yelm Highway at Meridian Road**
	More detailed local analysis is needed to determine whether the forecasted problem is an intersection capacity issue or a problem with model zone structure and loading points.
	Agency: County
	Limits: Vicinity of Yelm Highway and Meridian Road
	Notes:
2. Recommendations

Table 2-5, continued
Assessment Areas

<table>
<thead>
<tr>
<th>Project ID</th>
<th>Project Information</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>ASSESSMENT AREAS</td>
</tr>
</tbody>
</table>

Northeast Marvin Road
Forecast suggests examining the northeast section of Marvin Road to determine whether model zone structure and loading points are correct, local connections are improving operations beyond what the regional model can capture, or additional investment in capacity is warranted.

Agency: Lacey
Limits: Marvin Road, between Hawks Prairie Road and Britton Parkway in the southbound direction
Notes:

Southeast Marvin Road
More detailed local analysis is needed to determine whether the issue is one of capacity, zone structure, or the need for additional connections.

Agency: Lacey & County
Limits: Marvin Road south of Pacific Avenue
Notes:

College Street NE
Forecast indicates the need for a closer look, especially eastbound. Local operational analysis will help determine whether the forecast is pointing to issues with model zone structure or loading points, the role of local connections, or additional capacity needs.

Agency: Lacey
Limits: College Street NE at 15th Avenue
Notes:

Sleater-Kinney Road
Forecast suggests that more detailed local analysis is needed. Including more local connections in regional model may address forecasted issues.

Agency: Lacey
Limits: Sleater-Kinney Road, from Pacific Avenue to 14th Avenue
Notes:
2. Recommendations

Table 2-5, continued

Assessment Areas

<table>
<thead>
<tr>
<th>Project ID</th>
<th>Project Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>L8</td>
<td>Mullen Road / Log Cabin Extension</td>
</tr>
<tr>
<td>Agency:</td>
<td>Lacey & Olympia</td>
</tr>
<tr>
<td>Limits:</td>
<td>Mullen Road / Log Cabin corridor, from Ruddell Road to Boulevard Road</td>
</tr>
<tr>
<td>Notes:</td>
<td>Long-range regional analysis including this new corridor indicates that travel patterns throughout the south urban area will shift dramatically with its completion. Additional local analysis is needed to factor in the effects of the local connected street network and intersection treatments, and to validate whether the existing zone structure is appropriate after the new connection is added.</td>
</tr>
</tbody>
</table>

L9	**North Henderson Boulevard**
Agency:	Olympia
Limits:	Henderson Boulevard, from Plum Street to Yelm Highway
Notes:	More detailed local analysis may reveal issue is not one of capacity but more a function of model zone structure, loading points, or limitations in the regional model to reflect local street connections.

L10	**South Henderson Boulevard**
Agency:	Tumwater
Limits:	Henderson Boulevard, south of Yelm Highway
Notes:	Forecast suggests minor capacity issues in future. Suggest watching this corridor and addressing if warranted in 2030 RTP. Additional refinements such as modeling auxiliary turn lane impacts may alleviate the forecast issue.
2. Recommendations

Table 2-5, continued
Assessment Areas

<table>
<thead>
<tr>
<th>Project ID</th>
<th>ASSESSMENT AREAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>L11</td>
<td>14th Avenue Access to I-5</td>
</tr>
<tr>
<td></td>
<td>Local operational analysis needed to determine nature of issues at this highway loading point and appropriate measures to address any issues.</td>
</tr>
<tr>
<td></td>
<td>Agency: Olympia</td>
</tr>
<tr>
<td></td>
<td>Limits: 14th Avenue to I-5, at the Capitol</td>
</tr>
<tr>
<td></td>
<td>Notes: Plum Street</td>
</tr>
<tr>
<td></td>
<td>Local operational analysis needed to determine nature of issues and appropriate strategies for addressing them.</td>
</tr>
<tr>
<td>L12</td>
<td>Agency: Olympia</td>
</tr>
<tr>
<td></td>
<td>Limits: Plum Street, from Union Avenue to Marine Drive</td>
</tr>
<tr>
<td></td>
<td>14th Avenue in this vicinity was identified as a strategy corridor in the 2020 RTP. It has been removed from that designation pending results of this detailed local operational analysis to determine whether opportunities exist for optimizing traffic flow in conjunction with the Fones Road widening project (Olympia) and the One-Way Couplet project (Lacey). Movement on this corridor will also be influenced by the addition of the Log Cabin / Mullen Road connection, which will be factored into the local analysis.</td>
</tr>
<tr>
<td>L13</td>
<td>Agency: Olympia & Lacey</td>
</tr>
<tr>
<td></td>
<td>Limits: Hoffman Road / Fones Road / 18th Avenue / 14th Avenue vicinity</td>
</tr>
<tr>
<td></td>
<td>Operational issues with this intersection are likely related to the Yauger Way / West Olympia Access project.</td>
</tr>
<tr>
<td>L14</td>
<td>Agency: Tumwater, Olympia, WSDOT</td>
</tr>
<tr>
<td></td>
<td>Limits: Crosby Boulevard / US 101 / Cooper Point Road Vicinity</td>
</tr>
<tr>
<td></td>
<td>Operational issues with this intersection are likely related to the Yauger Way / West Olympia Access project.</td>
</tr>
</tbody>
</table>
2. Recommendations

Table 2-5, continued

Assessment Areas

<table>
<thead>
<tr>
<th>Project ID</th>
<th>Assessment Areas</th>
</tr>
</thead>
<tbody>
<tr>
<td>L15</td>
<td>SR 510</td>
</tr>
<tr>
<td></td>
<td>More detailed analysis is needed to better understand forecasted mobility issues associated with this corridor.</td>
</tr>
<tr>
<td></td>
<td>Agency: WSDOT & County</td>
</tr>
<tr>
<td></td>
<td>Limits: SR 510, between Yelm Highway and Yelm</td>
</tr>
<tr>
<td></td>
<td>Notes: Long-range regional analysis suggests that widening this facility does not alleviate future congestion issues although it does demonstrate improvement. Issues may be related to broader questions of rural level of service, methodology for estimating capacity on rural roads serving more suburban uses, or model zone structure.</td>
</tr>
<tr>
<td>L16</td>
<td>510/507 Loop – North Section (Y3)</td>
</tr>
<tr>
<td></td>
<td>Forecast suggests minor capacity problems on the new corridor by 2025, although it is still drawing traffic from SR 510/507 as intended. Monitor this corridor, modeling additional analysis of Pierce County impacts and potential benefits from increasing connections on local streets.</td>
</tr>
<tr>
<td></td>
<td>Agency: Yelm</td>
</tr>
<tr>
<td></td>
<td>Limits: 510/507 Loop – North Section (Y3)</td>
</tr>
<tr>
<td></td>
<td>Notes: Forecasted issues associated with this corridor appear to be linked to the SR 510 corridor. Impacts of proposed Cross Base Highway in Pierce County should also be evaluated, since it is likely that project will affect travel patterns in southeast Thurston County.</td>
</tr>
<tr>
<td>L17</td>
<td>Mud Bay Road Assessment Area</td>
</tr>
<tr>
<td></td>
<td>Evaluate and monitor issues associated with the segment of Mud Bay Road between Evergreen Parkway and US 101 that are evident in the 2030 forecast year.</td>
</tr>
<tr>
<td></td>
<td>Agency: Thurston County / Olympia / TRPC</td>
</tr>
<tr>
<td></td>
<td>Limits: Mud Bay Road between Evergreen Parkway and US 101</td>
</tr>
<tr>
<td></td>
<td>Notes: This segment is included within the study area boundaries of the West Olympia Access Study. It will be evaluated in detail as a part of that study. Results of that analysis will help determine the true nature of the forecasted problem and appropriate mitigation strategies, if warranted.</td>
</tr>
</tbody>
</table>
2. Recommendations

Public Transportation

Public Transportation includes transit capacity expansions, major park-and-ride lots, regional park-and-pool strategies, new transit centers and transfer centers, and express corridor plans proposed for Intercity Transit, the region’s public transportation service provider. The list reflects financial constraint as required by state and federal law, and supports the on-going work to provide life-line services beyond I.T.’s service boundary.

The 2025 RTP defines Intercity Transit’s service area as the current Public Transportation Benefit Area, or PTBA. The PTBA is approximately the urban growth areas of Lacey, Olympia, and Tumwater, with a connecting corridor to Yelm. Expansion of I.T. services will occur within this boundary. The Plan assumes that services generated outside this area will result from innovative public/private/not-for-profit partnerships that provide specific transportation strategies to targeted rural communities.

The regionally significant public transportation projects are identified in Table 2-6 (pages 2-35 to 2-37) and Map 2-5.
2. Recommendations

Table 2-6
Public Transportation Projects and Studies

<table>
<thead>
<tr>
<th>Project ID</th>
<th>Agency</th>
<th>Estimated Cost ($1,000)</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>T1</td>
<td>Intercity Transit</td>
<td>$500,000</td>
<td>To distinguish between existing service levels and capacity, the Plan assumes that restoration of services to pre-2000 levels and the cost of maintaining those services over time constitute costs of the “existing system,” restoration and maintenance of which is a regionally significant need.</td>
</tr>
<tr>
<td>T2</td>
<td>Intercity Transit</td>
<td>$53,000</td>
<td>To distinguish between existing service levels and new capacity, the Plan assumes that expansion of services includes those increments of sustained growth over the levels at the time of service reduction. This includes not just the initial cost of providing the increased service but the cost over time of maintaining it. Growth in various program types will not happen concurrently, as expansion is already underway in the vanpool program but still in the restoration stage for fixed-route service.</td>
</tr>
</tbody>
</table>

Project Information

<table>
<thead>
<tr>
<th>Locally-adopted TIP or CFP</th>
<th>2020 RTP</th>
<th>New Project</th>
</tr>
</thead>
<tbody>
<tr>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
</tbody>
</table>

Restore Services to 1997-1998 Service Levels and Maintain Them Over Time

Restored urban fixed-route and Dial-a-Lift services that were lost with the service reductions starting in 2000. This is about 206,000 vehicle service hours for fixed-route service per year, and about 61,500 vehicle service hours annually for Dial-a-Lift service.

Expansion of Urban Transit Services

Increase I.T.’s urban transit services commensurate with the goals and policies adopted in the long-range transit system plan and the 2025 RTP. This includes fixed-route and Dial-a-Lift services as well as the vanpool program and inter-regional express service.
Table 2-6, continued
Public Transportation Projects and Studies

| Project ID | Project Information
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PUBLIC TRANSPORTATION</td>
</tr>
<tr>
<td>New Transit Facilities</td>
<td>Construct two new regional transit centers, one in Hawks Prairie and the other in West Olympia, and smaller transit transfer centers in Tumwater, Yelm, and the Little Prairie area of Lacey.</td>
</tr>
</tbody>
</table>
| T3 | Agency: Intercity Transit
Estimated Cost ($1,000): $9,200
Notes: |
| | Locally-adopted TIP or CFP | 2020 RTP | New Project |
| **Regional Park-and-Ride Lots** | Construct two new regional park-and-ride lots. Each lot will contain about 500-stalls. |
| T4 | Agency: Intercity Transit
Estimated Cost ($1,000): $7,000
Notes: This is considered a “new” project because the 2020 RTP included policy support, but not project-specific recommendations for park-and-ride. |
| | Locally-adopted TIP or CFP | 2020 RTP | New Project |
| **Regional “Park-and-Pool” Plan and Implementation Strategy** | Develop a plan and implementation strategy for a regional network of smaller-sized “park-and-pool” lots to support carpool, vanpool and other trip reduction efforts. |
| T5 | Agency: Intercity Transit
Estimated Cost ($1,000): $250
Notes: |
| | Locally-adopted TIP or CFP | 2020 RTP | New Project |
2. Recommendations

Table 2-6, continued

Public Transportation Projects and Studies

<table>
<thead>
<tr>
<th>Project ID</th>
<th>Project Information</th>
<th>Project status</th>
</tr>
</thead>
<tbody>
<tr>
<td>T6</td>
<td>Express Corridor Plan and Implementation Strategy
Develop a plan and implementation strategy for connections between the city centers of Lacey, Olympia, and Tumwater with high frequency, express transit service.
Agency: Intercity Transit
Estimated Cost ($1,000): $250</td>
<td>Locally-adopted TIP or CFP 2020 RTP New Project</td>
</tr>
<tr>
<td>T7</td>
<td>Rural & Tribal Transportation Services (R/T)
Continue to identify and implement innovative rural transportation services to at-risk rural populations that offer at a minimum, affordable life-line services through public, private, and not-for-profit partnerships.
Agency: TRPC, various
Estimated Cost ($1,000): $ - (unknown)</td>
<td>Locally-adopted TIP or CFP 2020 RTP New Project</td>
</tr>
<tr>
<td>T8</td>
<td>Martin Way Park-and-Ride Lot Renovation and Expansion
Increase the capacity of the Martin Way Park-and-Ride lot by approximately 150 stalls and improve the efficiency of highway access from the lot.
Agency: Intercity Transit
Estimated Cost ($1,000): $2,480</td>
<td>Locally-adopted TIP or CFP 2020 RTP New Project</td>
</tr>
<tr>
<td>T9</td>
<td>Coordinated Public Transit – Human Services Transportation Plan Project Recommendations
Secure funding and implement the emerging high priority projects identified in the Human Services Transportation Plan supporting rural mobility projects throughout the Thurston region.
Agency: TRPC / Various
Limits: Various, throughout rural Thurston County
Estimated Cost ($1,000): n/a</td>
<td>Locally-adopted TIP or CFP 2020 RTP New Project</td>
</tr>
</tbody>
</table>

Notes: The Public Transportation Projects and Studies table continues with more projects.

June 1, 2007
2. Recommendations

Non-Motorized Facilities

Non-Motorized Facilities include investments on the Chehalis-Western, Lacey St. Clair, and Olympia Woodland trails, as well as new regional coordination efforts in support of the region’s Class I network of bike and pedestrian facilities.

Non-motorized facilities projects and studies are described in Table 2-7 (pages 2-39 to 2-40) and Map 2-6.
2. Recommendations

Table 2-7

Non-Motorized Facilities Projects and Studies

<table>
<thead>
<tr>
<th>Project ID</th>
<th>Project Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>B1</td>
<td>Chehalis-Western “Bridging the Gap” Project
Construct a connection between the Chehalis-Western Trail segments north and south of I-5 with a series of bridges that provide a direct north/south route for non-motorized travel.**
Agency: Thurston County, Lacey, Olympia, WSDOT Olympic Region, and TRPC
Limits: Chehalis-Western Trail alignment, between Martin Way and Pacific Avenue
Estimated Cost ($1,000): $11,200
Notes: A $4.1 million earmark of federal funds has been added to the local, regional, and state funds secured for this project. Construction of the span crossing I-5 is expected to be complete in 2006. Increase in original cost estimate is due to inflation since estimates were first developed and increases in right-of-way costs.</td>
</tr>
<tr>
<td>B2</td>
<td>Olympia Woodland Trail
Construct the Olympia Woodland Trail and provide appropriate access to on-street facilities as called for in the Olympia Woodland Trail Master Plan.
Agency: City of Olympia
Limits: From Georgia Pacific Plant at Fones Road to Capitol Lake
Estimated Cost ($1,000): $12,000
Notes: This 3.8-mile trail is the western half of the region’s principle east-west urban bike corridor. It links directly to the Lacey Woodland Trail and the Chehalis-Western Trail at its eastern terminus. The city has completed a Master Plan for the trail and acquired the right-of-way for the segment between Eastside Street and the eastern terminus. Project costs are taken from the Olympia Woodland Trail Master Plan.</td>
</tr>
</tbody>
</table>

June 2, 2006
2. Recommendations

Table 2-7, continued
Non-Motorized Facilities Projects and Studies

<table>
<thead>
<tr>
<th>Project ID</th>
<th>Project Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lacey Woodland Trail</td>
<td>Design and construct the Lacey Woodland Trail to its eastern terminus at Union Mills Road, providing appropriate access to on-street facilities.</td>
</tr>
<tr>
<td>Agency:</td>
<td>Lacey</td>
</tr>
<tr>
<td>Limits:</td>
<td>From Georgia Pacific Plant at Fones Road to Weyerhauser Box Plant at Union Mills Road</td>
</tr>
<tr>
<td>Estimated Cost ($1,000):</td>
<td>$2,000</td>
</tr>
<tr>
<td>Notes:</td>
<td>This 4.3-mile trail is the eastern half of the region’s principle east-west urban bike corridor. It links directly to the Olympia Woodland Trail and the Chehalis-Western Trail at its western terminus. The city is currently in the process of acquiring the right-of-way from Burlington Northern Santa Fe.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Project status:</th>
<th>Locally-adopted TIP or CFP</th>
<th>2020 RTP</th>
<th>New Project</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>*</td>
<td></td>
<td>*</td>
</tr>
</tbody>
</table>

Regional Trails Plan and Implementation Strategy	Revisit the 1993 Urban Trails Plan and extend it region-wide. Develop a coordinated plan and implementation strategy for linking the region’s various Class I bike facilities, providing thorough coverage to the region’s urban and rural communities. Identify appropriate measures for integrating the region’s Class I / Off-road trail system with its on-road facilities for bicyclists and pedestrians.
Agency:	TRPC
Estimated Cost ($1,000):	$75
Notes:	

<table>
<thead>
<tr>
<th>Project status:</th>
<th>Locally-adopted TIP or CFP</th>
<th>2020 RTP</th>
<th>New Project</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>*</td>
</tr>
</tbody>
</table>

Integration of Capitol-to-Capitol Trail into the Regional Trails Plan	Identify ways of integrating WSDOT’s work on the Capitol-to-Capitol Trails Plan into the broader Regional Trails Plan and Implementation Strategy.
Agency:	TRPC, WSDOT, Thurston County, Tumwater, and Olympia
Estimated Cost ($1,000):	$50
Notes:	

<table>
<thead>
<tr>
<th>Project status:</th>
<th>Locally-adopted TIP or CFP</th>
<th>2020 RTP</th>
<th>New Project</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>*</td>
</tr>
</tbody>
</table>
2. Recommendations

Transportation Technologies

Transportation Technology includes specific project and study recommendations that emerged from the region’s ITS (Intelligent Transportation System) Architecture completed in 2001. The architecture provides a blueprint for ways the region can increase its use of technology to make the system safer and more efficient. The ITS approach relies on system operations and investments. Projects and studies included in this RTP represent the next logical building blocks of an integrated technology platform.

The Transportation Technologies projects and studies are presented in Table 2-8 (pages 2-42 to 2-45).
2. Recommendations

Table 2-8
Transportation Technology Projects and Studies

<table>
<thead>
<tr>
<th>Project ID</th>
<th>Project Information</th>
<th>Project status:</th>
<th>Locally-adopted TIP or CFP</th>
<th>2020 RTP</th>
<th>New Project</th>
</tr>
</thead>
<tbody>
<tr>
<td>F1</td>
<td>Expand and Enhance the Freeway Management System</td>
<td>Locally-adopted TIP or CFP</td>
<td>*</td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td></td>
<td>Expand and enhance the freeway management system through improved freeway surveillance, flow management, and traveler information by using technologies such as traffic cameras, variable message signs, road and weather information stations, highway advisory radios, flow detection equipment, and ramp meters.</td>
<td>2020 RTP</td>
<td>New Project</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Agency: WSDOT Olympic Region, local agencies, and TRPC</td>
<td>New Project</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Limits: I-5 and US 101, including access points and non-state facilities as appropriate</td>
<td>New Project</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Estimated Cost ($1,000)</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$1,650</td>
<td>*</td>
<td>*</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Notes: While select elements of this project have been funded, the overall project is not funded and is not currently included in a financially-constrained state plan. Project is listed on the WSDOT list as a state project (O9).</td>
<td>New Project</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

F2	Implementation of Public Transportation System Strategic Deployment Plan	Locally-adopted TIP or CFP	*	*	*
	Implement the tasks and strategies outlined in the Public Transportation Strategic Deployment Plan, including improvements in communications, fare box upgrades and electronic payment, computer-aided dispatch, real time information for customers, security enhancements, and improvements to and coordination of demand-response service.	2020 RTP	New Project		
	Agency: Intercity Transit	New Project			
	Limits: Intercity Transit service area	New Project			
	Estimated Cost ($1,000):	*	*		
	$6,300	*	*		
	Notes: Aspects of this project are included in Intercity Transit’s 2004-2009 Transit Development Plan. The Regional ITS Architecture developed costs for the public transportation strategic deployment plan.	New Project			

June 3, 2005
Table 2-8, continued
Transportation Technology Projects and Studies

<table>
<thead>
<tr>
<th>Project ID</th>
<th>Project Information</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>TRANSPORTATION TECHNOLOGIES</td>
</tr>
<tr>
<td></td>
<td>Locally-adopted TIP or CFP</td>
</tr>
<tr>
<td>F3</td>
<td>Traveler Information Resource
Develop a one-stop regional, multi-modal web-based resource for travelers in Thurston County to find information on information such as traffic, road conditions, weather, and transportation resources.

Agency: TRPC, state, and local agencies

Limits: Information specific to the Thurston region and key inter-regional or state connections

Estimated Cost ($1,000): $50

Notes: Effort to be coordinated with other regional and statewide web, telephone, and media sources; including WSDOT’s Bi-State Trip Planner project.</td>
</tr>
<tr>
<td>F4</td>
<td>Feasibility Study for Improved Coordination of Traffic & Incident Management
Explore various concepts for coordinating regional traffic and incident management, such as coordinating corridor signal timing schemes between jurisdictions, or coordinating system surveillance with incident management functions. Many models may be explored, from creating a virtual but decentralized operations center to integrating select operations functions into a single management facility.

Agency: TRPC, state, and local agencies

Limits: The Thurston region

Estimated Cost ($1,000): $75

Notes:</td>
</tr>
</tbody>
</table>

2. Recommendations
2. Recommendations

Table 2-8, continued
Transportation Technology Projects and Studies

<table>
<thead>
<tr>
<th>Project ID</th>
<th>Project Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>F5</td>
<td>Strategy and Implementation Plan for Improving Regional Communications</td>
</tr>
<tr>
<td></td>
<td>Continue improvement in intra- and inter-regional transportation and emergency service communications. Explore opportunities to create dedicated regional public sector infrastructure for voice and data transmission that will continue operations during incidents and be used to share real time transportation information.</td>
</tr>
<tr>
<td></td>
<td>Agency: TRPC, state, and local agencies</td>
</tr>
<tr>
<td></td>
<td>Limits: The Thurston region and appropriate areas within western Washington</td>
</tr>
<tr>
<td></td>
<td>Estimated Cost ($1,000): $250</td>
</tr>
<tr>
<td>Notes:</td>
<td></td>
</tr>
<tr>
<td>Project status:</td>
<td>Locally-adopted TIP or CFP 2020 RTP New Project</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Project ID</th>
<th>Project Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>F6</td>
<td>Feasibility Study for Enhancing the Arterial Management System</td>
</tr>
<tr>
<td></td>
<td>Explore ways of transferring the use of transportation technology applications from the freeway management system to the local arterial system and other trouble spots. Potential opportunities include creating information and surveillance equipment pools, improving traveler information along local roadways, installing fog and ice warning systems, improving railroad grade crossing controls, and expanding the networks of road and weather information stations.</td>
</tr>
<tr>
<td></td>
<td>Agency: TRPC, state, and local agencies</td>
</tr>
<tr>
<td></td>
<td>Limits: The Thurston region</td>
</tr>
<tr>
<td></td>
<td>Estimated Cost ($1,000): $250</td>
</tr>
<tr>
<td>Notes:</td>
<td></td>
</tr>
<tr>
<td>Project status:</td>
<td>Locally-adopted TIP or CFP 2020 RTP New Project</td>
</tr>
</tbody>
</table>
Table 2-8, continued
Transportation Technology Projects and Studies

<table>
<thead>
<tr>
<th>Project ID</th>
<th>Project Information</th>
</tr>
</thead>
</table>
| F7 | Feasibility Study for a Regional Data Management System
Evaluate ways in which transportation data are collected, used, and stored. Explore the feasibility of a regional data management system for information that is commonly shared between agencies and of establishing a system for conveniently and cost-effectively archiving such data.
Agency: TRPC
Limits: The Thurston region
Estimated Cost ($1,000): $50
Notes: |
| F8 | Strategy for Improving Public Agency Fleet Management
Explore technology-based strategies for improving public agency fleet management. Consider the use of advanced vehicle location, computer-aided dispatch, and other transportation technologies in public agency fleets throughout the Thurston region. Look at opportunities for not only pool cars and vans, but maintenance and service vehicles and equipment.
Agency: TRPC
Limits: The Thurston region
Estimated Cost ($1,000): $75
Notes: |

<table>
<thead>
<tr>
<th>Locally-adopted TIP or CFP</th>
<th>2020 RTP</th>
<th>New Project</th>
</tr>
</thead>
<tbody>
<tr>
<td>Project status:</td>
<td></td>
<td>*</td>
</tr>
<tr>
<td>Project status:</td>
<td></td>
<td>*</td>
</tr>
</tbody>
</table>
2. Recommendations

WSDOT Projects

WSDOT Olympic Region is an active partner in the Thurston region, providing technical and policy input reflected in the 2025 RTP. Unlike the rest of TRPC’s partners, WSDOT Olympic Region is governed by statewide Department of Transportation procedures and processes that occur on different time schedules and with different criteria than regional processes. One such process is development of the Highway System Plan.

The Highway System Plan, or HSP, is a component of the state’s long-range transportation plan, which guides investments on state routes all around Washington. State projects must be included in the HSP before they can receive funding and proceed. All of the projects identified in the 2025 RTP are in the HSP; however, the Highway System Plan is not financially constrained, so it contains more projects than there is money to fund.

WSDOT will update the HSP in 2007. That plan is expected to be financially constrained; therefore, WSDOT may drop projects in the update. Regional and local agencies must work diligently with WSDOT to protect any 2025 RTP projects considered during the HSP update process. TRPC will address the impacts of the HSP update in future updates of the Regional Transportation Plan.

The recommended WSDOT projects and studies are described in Table 2-9 (pages 2-47 to 2-53) and Map 2-7.
Table 2-9
WSDOT Projects and Studies

<table>
<thead>
<tr>
<th>Project ID</th>
<th>Project Information</th>
<th>WSDOT PROJECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td>WSDOT Capacity Projects</td>
<td></td>
<td></td>
</tr>
<tr>
<td>O1</td>
<td>I-5 Widening From Lewis County to Maytown</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Widen I-5 from 4 lanes to 6 lanes</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Agency: WSDOT Olympic Region</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Limits: Lewis/Thurston County line to Maytown</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Estimated Cost ($1,000) - > $73,200 (see note)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Notes: Project is fully funded through the 2003 "Nickel Gas Tax" package. The segment south of SR 12 extends to Chehalis/Centralia and is included as a WSDOT Southwest Region project. Costs for the Thurston County segment of that project have not yet been determined, but should be included to the total project cost when known.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Project status:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Locally-adopted TIP or CFP</td>
<td>2020 RTP</td>
</tr>
<tr>
<td></td>
<td>*</td>
<td>*</td>
</tr>
<tr>
<td>O2</td>
<td>SR 510 Widening</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Widen SR 510 from 2 lanes to 4 lanes.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Agency: WSDOT Olympic Region</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Limits: Old Pacific Highway to Mud Run Road (approximate terminus of the future Y-3 by-pass)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Estimated Cost ($1,000) - $26,000</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Notes: Project is not funded and is not currently included in a financially-constrained state plan.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Project status:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Locally-adopted TIP or CFP</td>
<td>2020 RTP</td>
</tr>
<tr>
<td></td>
<td></td>
<td>*</td>
</tr>
</tbody>
</table>
2. Recommendations

Table 2-9, continued

WSDOT Projects and Studies

<table>
<thead>
<tr>
<th>Project ID</th>
<th>Project Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Steamboat Island Interchange, Stage 2
Complete Steamboat Island Interchange Stage 2 ramp construction and frontage road(s).
Agency: WSDOT Olympic Region
Limits: US 101 at Steamboat Island Road
Estimated Cost ($1,000) - $12,000
Notes: Project is not funded and is not currently included in a financially-constrained state plan. Some questions still exist as to the full extent of work that would be completed if the project is included in a financially-constrained plan due to low benefit-to-cost ratios for certain project aspects. If project is included in a constrained plan, scope will need to be refined to ensure adequate benefit commensurate with the investment.</td>
<td>
Locally-adopted TIP or CFP</td>
</tr>
</tbody>
</table>

| **US 101/SR 8 Interchange Retrofit**
Retrofit and expansion of the interchange to improve mobility and enhance safety, including expansion of on/off ramps from one lane to two, and bridge replacement.
Agency: WSDOT Olympic Region
Limits: US 101 at SR 8
Estimated Cost ($1,000) - $17,000
Notes: Project is not funded and is not currently included in a financially-constrained state plan. This is one of the most congested highway intersections in the Thurston region and is a WSDOT priority. | Locally-adopted TIP or CFP | 2020 RTP | New Project |
2. Recommendations

Table 2-9, continued

WSDOT Projects and Studies

<table>
<thead>
<tr>
<th>Project ID</th>
<th>Project Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>O5</td>
<td>I-5 Corridor Mobility Strategy</td>
</tr>
<tr>
<td></td>
<td>Evaluate mobility needs and strategies through this constrained corridor. Consider widening I-5 from 6 to 8 lanes to accommodate HOV, dedicated freight lanes, high capacity transit or other mobility strategies. Look for appropriate interim steps that can be implemented in the short- and medium-terms.</td>
</tr>
<tr>
<td></td>
<td>Agency: WSDOT Olympic Region</td>
</tr>
<tr>
<td></td>
<td>Limits: Lewis County line to Pierce County line (Mounts Road)</td>
</tr>
<tr>
<td></td>
<td>Estimated Cost ($1,000) - $4,000</td>
</tr>
<tr>
<td></td>
<td>Notes: Project is not funded and is not currently included in a financially-constrained state plan. WSDOT investment policy directs that any widening of I-5 recommended as part of this study effort would not occur until planned widening in Pierce County is completed, currently anticipated for some time in the 2020-2025 time horizon.</td>
</tr>
<tr>
<td>Project status:</td>
<td>Locally-adopted TIP or CFP</td>
</tr>
<tr>
<td></td>
<td>*</td>
</tr>
<tr>
<td>O6</td>
<td>SR 507 Route Development Plan Update</td>
</tr>
<tr>
<td></td>
<td>Revisit the SR 507 Route Development Plan. Evaluate mobility, access, rural community issues, and mitigation options associated with SR 507. Special focus is needed on the relationship between state route mobility needs and the "Main Street" needs of Bucoda, Rainier, Tenino, and Yelm. Inter-regional coordination is warranted to understand and address factors associated with demands emanating from Pierce and Lewis Counties.</td>
</tr>
<tr>
<td></td>
<td>Agency: WSDOT Olympic Region</td>
</tr>
<tr>
<td></td>
<td>Limits: Lewis County line to Pierce County line</td>
</tr>
<tr>
<td></td>
<td>Estimated Cost ($1,000) - $1,000</td>
</tr>
<tr>
<td></td>
<td>Notes: Project is not funded and is not currently included in a financially-constrained state plan.</td>
</tr>
<tr>
<td>Project status:</td>
<td>Locally-adopted TIP or CFP</td>
</tr>
<tr>
<td></td>
<td>*</td>
</tr>
</tbody>
</table>
2. Recommendations

Chehalis-Western Trail “Bridging the Gap” Project

- **Agency:** WSDOT Olympic Region, Thurston County, Lacey, Olympia, and TRPC
- **Limits:** Chehalis-Western Trail alignment, between Martin Way and Pacific Avenue
- **Estimated Cost ($1,000)**: $11,200 (State $ = $2.7 million)
- **Notes:** State, local, regional, and federal funds are secured for this project. Project is a partnership between state, local, and regional agencies with responsibilities divided as appropriate between the various partners. This project is also included on the Non-motorized facilities list as (B1).

Regional Park-and-Ride Investments

- **Project Information**
 - Construct appropriately-sized park-and-ride (or park-and-pool) lots throughout the region on the state system to support public transportation/system efficiency goals.
- **Agency:** WSDOT Olympic Region
- **Limits:** Various throughout the Thurston region, including potential for facilities on I-5, SR 12, US 101, SR 8, SR 507, SR 510, and SR 121
- **Notes:** Project is not funded and is not currently included in a financially-constrained state plan.

Table 2-9, continued

<table>
<thead>
<tr>
<th>Project ID</th>
<th>Project Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>O7</td>
<td>Regional Park-and-Ride Investments. Construct appropriately-sized park-and-ride (or park-and-pool) lots throughout the region on the state system to support public transportation/system efficiency goals. Agency: WSDOT Olympic Region. Limits: Various throughout the Thurston region, including potential for facilities on I-5, SR 12, US 101, SR 8, SR 507, SR 510, and SR 121. Notes: Project is not funded and is not currently included in a financially-constrained state plan.</td>
</tr>
<tr>
<td>O8</td>
<td>Chehalis-Western Trail “Bridging the Gap” Project. Construct a connection between the Chehalis-Western Trail segments north and south of I-5 with a series of bridges that provide a direct north/south route for non-motorized travel. Agency: WSDOT Olympic Region, Thurston County, Lacey, Olympia, and TRPC. Limits: Chehalis-Western Trail alignment, between Martin Way and Pacific Avenue. Estimated Cost ($1,000): $11,200 (State $ = $2.7 million). Notes: State, local, regional, and federal funds are secured for this project. Project is a partnership between state, local, and regional agencies with responsibilities divided as appropriate between the various partners. This project is also included on the Non-motorized facilities list as (B1).</td>
</tr>
</tbody>
</table>
2. Recommendations

Table 2-9, continued
WSDOT Projects and Studies

<table>
<thead>
<tr>
<th>Project ID</th>
<th>Project Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>O9</td>
<td>Freeway Management System
Expand and enhance the freeway management system through improved freeway surveillance, flow management, and traveler information using technologies such as traffic cameras, variable message signs, road and weather information stations, highway advisory radios, flow detection equipment, and ramp meters.

Agency: WSDOT Olympic Region, local agencies, TRPC

Limits: I-5 and US 101, including access points and non-state facilities as appropriate

Estimated Cost ($1,000) - $1,650

Notes: While select elements of this project have been funded, the overall project is not funded and is not currently included in a financially-constrained state plan. Project is listed on the Transportation Technologies List as (F1).</td>
</tr>
<tr>
<td></td>
<td>Locally-adopted TIP or CFP</td>
</tr>
<tr>
<td></td>
<td>*</td>
</tr>
</tbody>
</table>

O10	**West Olympia Access Study and Follow-Up Project** Develop a strategy to improve through traffic movement around the Black Lake Boulevard/Cooper Point Road intersection between U.S. 101 and the area of Yauger Way. Implement the resulting recommendation. **Agency:** WSDOT & Olympia **Limits:** The area of Black Lake Boulevard/Cooper Point Road intersection between U.S. 101 and the Yauger Way vicinity. **Estimated Cost ($1,000)** - $10,460 **Notes:** An initial assessment was conducted as part of the value engineering study for the U.S. 101/Crosby Boulevard interchange widening project. This project combines two projects also included on the Corridor Studies and Sub-Area Plans list as (S4) and the New Connections or Alignments list as (A11). Project costs may change as a recommendation is developed.		
	Locally-adopted TIP or CFP	2020 RTP	New Project
	*	*	*
2. Recommendations

Table 2-9, continued
WSDOT Projects and Studies

<table>
<thead>
<tr>
<th>Project ID</th>
<th>Project Information</th>
<th>WSDOT PROJECTS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O11</td>
<td>510/507 Loop - South Section (Y2)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Construct a new 2/3 lane, limited access route south of the city providing an alternate route for through traffic.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Agency: WSDOT & Yelm</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Limits: The vicinity of George Road SE to Mud Run Road</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Estimated Cost ($1,000) - $8,800</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Notes: Preliminary engineering and environmental assessment are complete. This project is also included in the New Connections or Alignments List as (A10).</td>
<td></td>
</tr>
<tr>
<td>Project status:</td>
<td>Locally-adopted TIP or CFP</td>
<td>2020 RTP</td>
</tr>
<tr>
<td></td>
<td>*</td>
<td>*</td>
</tr>
</tbody>
</table>

O12	NE Lacey Access Study		
	Develop an economic incentives strategy to address mobility issues along I-5 between the Martin Way and Nisqually interchanges.		
	Agency: WSDOT & Lacey		
	Limits: I-5 between the Martin Way and Nisqually interchanges.		
	Estimated Cost ($1,000) - $500		
	Notes: This project is also included on the Corridor Studies and Sub-Area Plans list as (S4). It will take a broader look at mobility issues and does not point to any particular solution before completing the study.		
Project status:	Locally-adopted TIP or CFP	2020 RTP	New Project
	*	*	
Table 2-9, continued
WSDOT Projects and Studies

<table>
<thead>
<tr>
<th>Project ID</th>
<th>Project Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>O13</td>
<td>SR510 – Yelm Loop</td>
</tr>
<tr>
<td></td>
<td>Construct a new 2/3 lane, limited access route north of Yelm providing freight access to the city and an alternate route for through-traffic.</td>
</tr>
<tr>
<td></td>
<td>Agency: WSDOT</td>
</tr>
<tr>
<td></td>
<td>Limits: SR 510 near Mud Run Road to SR 57 near McKenna Road.</td>
</tr>
<tr>
<td></td>
<td>Estimated Cost ($1,000): $70,900</td>
</tr>
<tr>
<td></td>
<td>Notes: In 2005 this moved fully to a WSDOT responsibility. To date, $35,900,000 has been secured to complete design and secure right-of-way.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Locally-adopted TIP or CFP</th>
<th>2020 RTP</th>
<th>New Project</th>
</tr>
</thead>
<tbody>
<tr>
<td>*</td>
<td>*</td>
<td></td>
</tr>
</tbody>
</table>

June 2, 2006
3. Goals and Policies

Access
Safety
Reliability
Choice
Efficiency
3. Goals and Policies

Goals and Policies

Goals and policies translate the region’s Guiding Principles into a more detailed framework for transportation decision-making at all levels of government. The 20 policy elements in this Plan address four aspects of transportation planning and implementation: Transportation relationships, system management, system components, and process.

Transportation Relationships

These policy elements describe transportation’s most essential relationships: Between transportation and land use, between different modes, and between transportation and people’s ability to connect with their community.

1. **Transportation and Land Use Consistency** (page 3-6)
 Goal: Ensure the design and function of transportation facilities are consistent with and support healthy urban, suburban, and rural communities.

2. **Multimodal Transportation System** (page 3-8)
 Goal: Work toward an integrated multimodal transportation system that supports adopted land use plans, increases travel options, and reduces overall need to drive alone.

3. **Barrier-free Transportation** (page 3-10)
 Goal: Ensure transportation system investments support the special travel needs of youth, elders, people with disabilities, literacy or language barriers, and those with low incomes.

System Management

These policy elements describe the essential functions associated with owning and operating the transportation system. They address enhancing safety and maintenance; increasing system efficiency through demand management; harnessing technologies to improve safety and efficiency; and improving freight mobility.

4. **System Safety and Security** (page 3-12)
 Goal: Promote the safety and security of those who use, operate, and maintain the transportation system.

5. **System Maintenance and Repair** (page 3-14)
 Goal: Protect investments that have already been made in the transportation system and keep life-cycle costs as low as possible.
3. Goals and Policies

6. **Travel Demand Management** *(page 3-16)*
 Goal: Increase overall operating efficiency of the transportation system through the effective use of measures that reduce the need to drive alone at peak periods.

7. **Transportation Technologies** *(page 3-18)*
 Goal: Use technology-based approaches to address transportation congestion, safety, efficiency, and operations.

8. **Freight Mobility** *(page 3-20)*
 Goal: Promote efficient, cost-effective and safe movement of freight in and through the region.

System Components

Transportation in the Thurston region encompasses many different forms – or modes. These policy elements describe each of the specific modes considered in the Plan.

9. **Streets, Roads, and Bridges** *(page 3-22)*
 Goal: Establish a street and road network that provides for the safe and efficient movement of people and goods while supporting adopted land use goals.

10. **Public Transportation** *(page 3-24)*
 Goal: Provide an appropriate level of reliable, effective public transportation options commensurate with the region’s evolving needs.

11. **Biking** *(page 3-26)*
 Goal: Increase the share of all trips made safely and conveniently by biking.

12. **Walking** *(page 3-28)*
 Goal: Increase the share of all trips made safely and conveniently by walking.

13. **Rail** *(page 3-30)*
 Goal: Ensure the long-term viability and continued use of existing rail lines in the region for freight and passenger rail travel.

14. **Aviation** *(page 3-32)*
 Goal: Provide an appropriate level of facilities and services to meet the general aviation needs of residents and businesses in the region.
15. **Marine Transportation** *(page 3-34)*

Goal: Provide an appropriate level of facilities and services to meet the region’s marine transportation needs.

Process

These policy elements describe the various processes that are integral to transportation decision-making in this region.

16. **Public Involvement** *(page 3-36)*

Goal: Convene on-going community discussions and public input into regional transportation planning and decision-making processes.

17. **Intergovernmental Coordination** *(page 3-38)*

Goal: Ensure transportation facilities and programs function seamlessly across community borders and between regions.

18. **Environmental and Human Health** *(page 3-40)*

Goal: Minimize transportation impacts on the natural environment and the people who live and work in the Thurston region.

19. **Performance Measures** *(page 3-42)*

Goal: Develop performance measures that are efficient to administer, effective in assessing performance, and meaningful to the public.

20. **Transportation Funding** *(page 3-44)*

Goal: Ensure that transportation revenues provide maximum public benefit and support adopted land use strategies.

Each policy element in this section includes not only goal and policy language, but also how the element fits into a regional transportation perspective. That context describes:

- Why each element is important;
- The challenges to achieving the goals and policies associated with this element;
- Related public comments received through community outreach; and
- Potential implementation measures that would support the objectives through specific projects or programs.
3. Goals and Policies

Comments are drawn from the various public outreach efforts conducted by TRPC over the last few years. These efforts included community discussion groups held throughout the region, rural and urban focus groups, informal “opinionnaire” surveys, and other roundtables and public meetings. The comments reflect the range of opinion that usually surfaces when community members are given an opportunity to talk with each other in depth about transportation issues. They also point to some of the challenges the region faces in developing transportation strategies that work for everyone.

Whether this section is viewed in its entirety or the focus is on select policy elements, it is likely to generate more questions than answers – more ideas than conclusions. That’s the nature of transportation. Seemingly simple issues become complicated as relationships are understood or implications are realized. Individual perspective and benefit intertwine with objectivity and community benefit. Community objectives often contradict themselves during the implementation phase.

This Goals and Policies section points to some of the potential opportunities and challenges awaiting the Thurston region.
1. Transportation and Land Use Consistency

Goal: Ensure the design and function of transportation facilities are consistent with and support healthy urban, suburban, and rural communities.

Policies:

1.a Commit to the development and implementation of land use plans, development patterns and design standards that encourage non-motorized travel and use of mass transit, yet recognize the unique needs of the urban, suburban and rural communities in Thurston County.

1.b Provide transportation facilities that support the location of jobs, housing, industry, and other activities as called for in adopted land use plans.

1.c Meet mobility, access, and economic goals in designated strategy corridors with an appropriate combination of investments, policies, and land use measures.

1.d Design and invest in transportation projects that have a lasting positive impact on the communities served, reflect the goals of the people who live and work in the area, and contribute to a sense of place.

1.e Support policies, programs, and procedures that promote urban infill.

Why Transportation and Land Use Consistency Is Important:

What can – or cannot – be supplied in the way of transportation facilities, services, and programs is directly related to the kind of community that is built. Low-density, segregated land uses are auto-oriented, no matter the level of service. However, mode choices are a feasible and affordable element of compact development patterns. Shorter trips and convenient connections depend on compact development with a mix of housing types, and appropriate-scale commercial and civic uses. On a per capita basis, this is also a cost-effective and efficient kind of transportation system for government to offer.

Challenges for Transportation and Land Use Consistency:

- Policy makers are struggling with the “Vision/Reality Disconnect” – where adopted community visions don’t seem to be playing out on the ground.

- The incremental changes needed to realize these visions may be worrisome to some residents. For example, established urban neighborhoods sometimes object to infill projects that add housing to adjacent lots. While infill improves the delivery of government services – like transit – it can also change the local neighborhood character.

- Growth management policies protect the diversity of urban, suburban and rural communities, but also limit the range of choices available to both government and individual property owners.
Public Comment and Input:
Because of the way people experience transportation and the way it’s impacted by land use, many understand the relationship, even if that understanding takes the form of a question.

“How can we build communities that require less travel? That’s the key.”

“I like living in a city where I don’t have to use my car.”

“Part of our problem has to do with land use… We push our communities out to the perimeter and then wonder why our roads are all clogged up.”

Some who’ve shared their views on the transportation/land use relationship talk of the importance of government leadership in promoting and implementing the kinds of land use called for in local plans.

“I’ve long been an advocate of growing ‘up’ rather than ‘out.’ But until we have a local jurisdiction that is willing to allow taller buildings that may impede someone’s scenic view, you’re going to continue to have sprawl.”

The need for leadership is often tempered with a note of caution.

“But we’ve got to be careful about this. I’m not sure I want government deciding where I’m going to live, work, shop, or play.”

There’s also recognition that the American Dream is not particularly transit-friendly.

“People want their space, their own home, their own yards. I don’t believe we’re going to be able to get people to buy into homes at the density that will support public transportation.”

Measures to Support Transportation and Land Use Consistency Objectives:
- Identify and reduce barriers that discourage private sector development or redevelopment of close-in urban areas as called for in adopted land use plans, where efficient transportation can be provided.
- Implement parking standards and costs in city centers and core areas that encourage people to use a variety of transportation modes.
- Initiate public/private partnership development opportunities for transportation-efficient projects. Use the regional forum to share information with other jurisdictions during implementation.
- Make appropriate use of access management techniques to moderate the impacts of land use on the regional transportation system.
- Site public facilities in areas with convenient public transportation and activity center access.

Did You Know…?
Between 1996 and 2000, infill development accounted for almost 13% of all residential permits issued in urban areas. Housing units on small lots accounted for only 6% of all residential acres consumed in urban areas. This contrasts with dwellings on oversized lots which accounted for less than 3% of all residential permits issued in urban areas, but constituted 18% of all residential acres developed.
Source: TRPC “Buildable Lands Work Program”
2. Multimodal Transportation System

Goal: Work toward an integrated multimodal transportation system that supports adopted land use plans, increases travel options, and reduces overall need to drive alone.

<table>
<thead>
<tr>
<th>Policies:</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.a Provide for quality transportation choices appropriate to existing and future land uses, including walking, biking, public transportation, rail, and motor vehicles.</td>
</tr>
<tr>
<td>2.b Ensure that development of transit transfer centers, activity centers, employment centers, schools, rail stations, the waterfront, and the airport accommodates multiple modes of travel and safe, efficient connections among those modes of travel.</td>
</tr>
<tr>
<td>2.c Invest in individual travel modes in ways that meet mode-specific needs while contributing to the overall development of a seamless multimodal transportation system.</td>
</tr>
<tr>
<td>2.d Promote public education on the rights and responsibilities of drivers, bikers, and walkers, and ways to travel together efficiently and safely.</td>
</tr>
</tbody>
</table>

Why a Multimodal Transportation System Is Important:
While many adults drive for most of their needs, no one relies exclusively on driving. Walking is usually required during some part of the trip, even if it’s only between the car and the building. It’s often easier to travel between multiple, close destinations by foot, bike or bus than by driving. Many people who need to travel can’t drive – young people, some older adults, and some with physical disabilities. The transportation system has to meet many different kinds of travel needs safely and efficiently. A multimodal transportation system recognizes all travel needs and supports the movement of freight as well as people. A well-developed multimodal transportation system allows some users the choice to own fewer or no vehicles, avoiding the costs of operation, maintenance, and insurance. A multimodal transportation system increases choice and opportunity.

Challenges for a Multimodal Transportation System:
- Over the last 15 years, the road network was retrofitted to serve as a multimodal network, accommodating increasing traffic while providing safe and convenient options for biking, walking, and transit. Government is sometimes criticized for investing in multimodal facilities.
- Many people assume that we can somehow build our way out of congestion. The challenge is to broaden understanding that congestion is something to be managed, not solved.
- One way of managing congestion is to build transportation-efficient communities that offer safe and convenient travel choices and shorter trips, regardless of mode. Freeways and high speed arterials may move cars faster, but are not conducive to concentrated land uses.
Public Comment and Input:

With the exception of transportation planners, engineers, and policy makers, not many people use the term “multimodal transportation system.” But they know how it’s supposed to function.

“It’s crazy that you really can’t get from the train station to the Capitol. We’re the state capitol! People come here from all over. And if they arrive by train, they can’t get anywhere.”

“As drivers, we need more connection in our bike lanes. It’s nerve-wracking when the bike lane ends and the cyclist is suddenly in the same lane I’m driving in.”

Measures to Support Multimodal Transportation System Objectives:

- Continue to serve new development with interconnected public streets that provide safe and convenient pedestrian, bicycle, and motor vehicle access. Work to ensure that neighborhood residents understand that future connections are planned, and what functions those connections are intended to serve.

- Use street design as a tool to influence driver behavior, especially where other travel modes are encouraged or likely, such as in neighborhoods, near schools and civic centers.

- Look for opportunities to make “neighborhood connections” that provide non-motorized access between existing subdivisions and destinations like schools, parks, or major transit routes, where full street connections are not feasible.

- Recognize that a one-size-fits-all approach to developing a multimodal transportation system is not cost-effective. Continue to tailor design standards appropriate to rural, suburban, and urban uses.

- Encourage all travelers to “share the road safely” through public awareness and educational programs.

- Promote multimodal trip-making by locating appropriately-sized park-and-ride facilities near major transit / highway interchanges, smaller park-and-(car)pool facilities along key suburban and rural routes, and park-and-bike facilities adjacent to bike trails such as Yelm-to-Tenino and the Chehalis-Western.

Did You Know…?

All of Intercity Transit’s buses are fitted with bicycle carry racks that enable people to combine transit and biking as a travel option.

Source: Intercity Transit
3. Barrier-Free Transportation

Goal: Ensure transportation system investments support the special travel needs of youth, elders, people with disabilities, literacy or language barriers, and those with low incomes.

Policies:
3.a Ensure transportation facilities comply with the Americans with Disabilities Act of 1990.
3.b Construct public transportation stops and walkway approaches that are accessible to those with differing physical capabilities.
3.c Provide transportation services, facilities, and programs that minimize barriers to people who don’t speak or read English.
3.d Present information and provide public participation opportunities for people who have limited literacy skills.
3.e Promote land use policies that provide a variety of housing types in core areas near employment and services.

The intent of these policies is to support implementation of state and federal regulations for barrier-free transportation.

Why Barrier-Free Transportation Is Important:
Transportation is considered an essential factor in maintaining independence, economic self-sufficiency and dignity, and in preventing isolation. However many residents face challenges because of physical, economic, or linguistic hurdles – such as negotiating curbs and uneven sidewalks, arranging transportation to work, the doctor’s office, and the grocery store, and reading transit schedules and street signs. Barrier-free transportation is based on thoughtful design, diverse travel and housing choices, and policy awareness that reduces these mobility challenges.

Challenges for Barrier-Free Transportation:
The population in the Thurston region is aging rapidly. Fit and healthy baby boomers in their prime wage earning years today will soon begin retiring. As the trend of “aging in place” increases, more people will want to stay in the Thurston region. Services and programs serving seniors, youth, and those with disabilities will see more demand in the next few decades.

Those services and barrier-free improvements to the transportation infrastructure are already underfunded and unable to keep up with current demand. Simply trying to retrofit existing facilities as called for in the Americans with Disabilities Act is beyond the means of most communities. Supporting the independence of our growing senior population depends on the success of establishing cost-effective, convenient travel alternatives and community development patterns.

Public Comment and Input:
People with disabilities are among the most vocal proponents of an efficient, barrier-free transportation system that works. They rely on it, and know the impacts when it’s unavailable.

“Transportation for people with disabilities is really important to me because I’m a person who wants to be on the go, and if my husband can’t drive me I have to hustle a ride. And I work
with lots of seniors who have to rely on someone else for transportation because the transit service doesn’t meet their needs.”

“People often see these services and programs as part of an essential “social safety net” that they value in their community.”

“Many of the people who need social services in this community don’t have cars. And they have a hard time getting around. Transit provides a social safety net.”

There’s a growing awareness of the needs of elders who were once independent travelers, but can no longer drive. This impacts their adult children, who often assume responsibility for their parents’ transportation needs.

“People who’ve lived in this community and grown old will know they don’t have to leave and move to another community that does have public transportation just because they can’t drive anymore. Having good public transportation means they can stay here.”

“We need to think about the elderly and children when we design our transportation systems. They don’t have any way to get around without a car.”

Balancing individual choice and demand for government service is challenging.

“It’s not that the needs of people in the city rank higher than those of rural people, but a rural lifestyle is a choice. And I know a lot of people who, as they got sicker or more infirm, knew that they needed to be closer to the services they need. So they moved. And there has to be a lot of that, because we don’t have the same extended families like we used to have. Society has changed. If people live that far out in the sticks, they need to come to where the services are. We can’t keep stretching the limited dollars we have to service every square mile of road system we have in every possible place that people may want to live.”

Did You Know…?

Two percent of Thurston’s population aged 16-64 have a mobility limitation, compared to 13.6% of people age 65 and over. By 2025, about 20% of the region’s population will be 65 or older, up from 12% of the population in 2000.

Source: 2000 Census and TRPC forecasts

Measures to Support Barrier-Free Transportation Objectives:

- Forge partnerships among government, non-profit, for-profit, and faith-based agencies to identify and serve the transportation needs of the region’s youth, elders, and people with disabilities or low incomes. With an expanding senior population, providing cost-effective alternatives to Dial-A-Lift is becoming increasingly important. Options may involve land use and service delivery measures.

- Look for innovative ways of funding and providing life-line transportation services.

- Identify ways to offer transportation services that connect low-income populations with employment areas and social services. Identify and address regulatory barriers impacting the ability of non-traditional transportation partnerships to provide services.

- Explore innovative public/private partnerships aimed at increasing affordable, transit-friendly housing choices in the urban area near essential services.
4. System Safety and Security

Goal: Promote the safety and security of those who use, operate, and maintain the transportation system.

Policies:

4.a Use a combination of education, enforcement, design features, and investments to mitigate existing hazards and avoid potential hazards.

4.b Add shoulders to narrow, high-volume rural roads.

4.c Use street designs that encourage safe driver behavior.

4.d Use compact urban and suburban development techniques to reduce the overall distance that people need to travel.

4.e Invest in projects that improve passenger safety and security on public transportation and at associated facilities like park-and-ride lots and transit centers.

4.f Provide for safe school walking routes.

4.g Retrofit key transportation facilities to improve their ability to withstand a major earthquake or other natural disaster.

4.h Build in system redundancy to support emergency response and reduce community disruption during natural or man-made disasters.

4.i Encourage coordination between transportation system providers and emergency response providers who rely on that system.

Why System Safety and Security Is Important:

The ability to travel safely – regardless of mode – is recognized as the most basic of transportation needs.

Challenges for System Safety and Security:

- Engineers are challenged to stretch limited revenues to design and build transportation systems that accommodate driver error, lapse of attention, and poor weather conditions without loss of life or injury to travelers. This is especially difficult to manage in urban areas with frequent conflict between motorized and non-motorized travel.

- Rural roads also pose specific safety challenges. High travel speeds often result in more serious damage when vehicles lose control, as well as endangering others using the system or engaging in nearby activities.
Public Comment and Input:

Safety is a fundamental concern for all travelers, regardless of mode.

“Unsafe roads are of more concern to me than any other transportation issue.”

“I feel very unsafe bicycling in my area. I would love to be able to bicycle, but I can’t do it.”

“I feel really strongly about taking care of the roads, making them safer and adding shoulders. I’m a school bus driver and I see the kids standing out on the narrow roads waiting for the bus. It’s dangerous.”

There’s also a growing sense that part of the problem is driver behavior, not street design or maintenance.

“The aggressiveness with which people drive today is relatively new, and a growing problem. People are regularly running red lights and cutting into traffic.”

“We’ve got safe roads and unsafe drivers. That’s a problem, but whose responsibility is it to fix it?”

Measures to Support System Safety and Security Objectives:

- Implement measures that promote safe and responsible behavior by all travelers.
- Explore innovative methods of making signs, crosswalks, traffic signals and other system elements more visible, such as using size, placement and lighting to improve readability of signs.
- Ensure that local, tribal, and state governments, school districts, Intercity Transit, the Port of Olympia, and emergency service providers can effectively communicate and coordinate their services following a major emergency that disrupts transportation in the Thurston region.
- Evaluate the experience of other communities and assess the feasibility of using cameras and other technologies to detect red light running and speeding, and enforce applicable laws.
- Implement appropriate measures to deter vandalism and crimes at park-and-ride lots and transit centers, and ensure that sites project a sense of safety and security for users.
5. System Maintenance and Repair

Goal: Protect investments that have already been made in the transportation system and keep life-cycle costs as low as possible.

<table>
<thead>
<tr>
<th>Policies:</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.a</td>
</tr>
<tr>
<td>5.b</td>
</tr>
<tr>
<td>5.c</td>
</tr>
<tr>
<td>5.d</td>
</tr>
<tr>
<td>5.e</td>
</tr>
</tbody>
</table>

Why System Maintenance and Repair Is Important:

Maintenance and repair are needed to protect investments already made in the system. Maintaining the system keeps life-cycle costs low, minimizes hazards resulting from deteriorating pavement or debris, and reduces the need for costly reconstruction projects.

Challenges for System Maintenance and Repair:

Local budgets cannot adequately maintain the transportation system, let alone rebuild it. Without sufficient funding to take care of existing facilities and make structural investments like shoulder additions that keep the travel lanes from eroding, the challenges of the transportation system will only grow worse.

Public Comment and Input:

Like system safety, maintenance and repair resonates with people. Residents intuitively understand the importance of protecting investments.

“I don’t think it makes sense to let part of the existing system go to ruin in order to have enough money to build something new, that will also add to the base that you’re already not able to support. Take care of the existing system first. After that, you can look for ways to expand or improve the system.”

“We need to keep the roads safe, and it doesn’t make any sense to invest all this money into our roads if we don’t maintain them. Maintenance is a high priority.”

Realizing financial savings of keeping life-cycle costs low is important to residents, even when it seems there isn’t enough money to do it.

“If we don’t maintain it now, it’ll cost us more in the future. Maintenance now is dollars in the bank for the future.”
“I’d love to see us spend less money on roads and more money on the other transportation needs, and one of the best ways is to do a better job of maintaining our roads. The longer we let them degrade, the more expensive they are to fix. We’re building up this maintenance deficit that is going to be tremendously expensive to fix. If we maintain our roads more frequently, it’ll actually cost us less than if we maintain them less frequently.”

People often comment on the importance of maintaining the entire road, not just the vehicle travel lanes.

“Bike lanes also have to be well-maintained. Gravel and ruts make it unsafe, and bikers will move towards the line.”

Measures to Support System Maintenance and Repair Objectives:

- Ensure sweeping and maintenance activities are adequately scheduled and address the entire curb-to-curb or shoulder-to-shoulder need, including bike lanes and multiuse shoulders.
- Continue to support pavement management programs that promote lowest life-cycle costs, including increases to base funding levels where possible to attain optimal paving levels.
- Support legislation giving local jurisdictions additional revenue and revenue authority to optimize maintenance and repair programs.
- Strengthen and improve street cut ordinances to minimize utility impacts on pavement in good condition.
- Explore options for identifying, prioritizing, and funding maintenance and repair projects on streets and roads that cross boundaries between cities, towns, counties, tribes, and state facilities.

Did You Know…?

Funding annually falls $4.6 million short in pavement management programs across the region. The inability to fully fund basic resurfacing programs at their optimal levels means more roads will need costly reconstruction in the future. Full funding for pavement management programs is imperative in keeping pavement life-cycle costs as low as possible.

Source: TRPC, Survey of local transportation departments
6. Travel Demand Management

Goal: Increase overall operating efficiency of the transportation system through the effective use of measures that reduce the need to drive alone at peak periods.

Policies:

6.a Promote mixed-use urban developments that reduce the need for auto travel, including financial and other incentives to encourage transportation-efficient development and redevelopment.

6.b Improve access to public transportation, ridesharing, bicycling, and walking.

6.c Promote private and public sector transportation demand management programs and services that encourage employees to commute to work by means other than driving alone or to change commuting patterns through teleworking, flex-time, or compressed work weeks.

6.d Develop park-and-ride lots throughout the region, including shared use of underutilized parking lots at businesses and other facilities.

6.e Encourage the use of technologies that enable people to participate in activities or meet their needs without having to travel.

6.f Use travel demand management techniques to provide alternatives during temporary congestion resulting from major construction projects.

Why Travel Demand Management Is Important:

Travel demand management – also known as TDM – provides a variety of tools to increase the operating efficiency of the transportation system. The range of tools in the TDM toolkit may be tailored to specific needs in a corridor or downtown area, or applied region-wide. These relatively low-cost options complement other transportation investments, help to better utilize the capacity of the system, and spread demand for services over a longer period of time. An effective mix of TDM strategies helps people manage the impacts of congestion on their lives by changing when, how, or why they travel.

Challenges for Travel Demand Management:

- Government has the responsibility to both respect residents’ freedom to choose how they use the transportation system and to maximize the efficient use of the system. This often results in difficult choices.

- TDM’s success often relies on other factors, such as land use, public transportation, and employer support. For example, without supportive land use patterns and sufficient public transportation, parking management strategies cannot be effective.

- Some people think of “travel demand management” as a synonym for the State’s “Commute Trip Reduction” (CTR) law, without distinguishing between the two. TDM, however, is broader in scope and its success does not hinge wholly on CTR results.
Public Comment and Input:

Many people don’t know the term TDM, but understand the concept and its potential for managing the impact of congestion in their own lives.

“I’ve been out on Yelm Highway at 5:00, and it’s a zoo! Quite frankly, I don’t know why people who know that day-in and day-out it’ll be a zoo, keep driving into the zoo! There are other ways to schedule your day. Same thing goes for Marvin Road and Black Lake/101. Why don’t they do a little flex time, get off at six? Pretty simple math to me. State workers have this ability.”

Readily available, free parking impacts the success of transit options.

“Parking fees are user fees. It’s unpopular. We get lots of complaints… But there’s a direct correlation between how high your parking fees are and how many people use carpools, or take a van, or do some other kind of alternative… It’s called economics.”

“Why do we put in these new high schools, and put in these mammoth parking lots for the students that encourage them to drive their cars to school? And then, taxpayers are still paying for the school bus!”

Supportive features like park-and-ride lots are recognized as important TDM elements.

“We should be trying to set more land aside for park-and-rides, to support suburban and rural transit alternatives. If we don’t start thinking about this now, there won’t be any good, accessible land available when we need it.”

Measures to Support Travel Demand Management Objectives:

- Optimize the use of public and private parking in core areas, city centers and employment sites through land use policies and pricing to improve consistency with demand management objectives.
- Consider the reduction of wasted road capacity as a means of increasing road capacity.
- Work to meet Commute Trip Reduction goals.
- Establish transportation emphasis areas in activity centers. Pursue parking management and trip reduction with businesses, to free up customer parking and reduce all-day employee parking.
- Integrate TDM in schools, including transit access and siting decisions, parking availability and management, and curriculum-based programs.
- Identify a sufficient and stable source of funding for TDM programs, targeted at demonstrated long-term benefits and effective program sharing ideas.

Did You Know…?

About 15% of south county commuters carpool or vanpool to work. This share is even higher on the Indian Reservations, where over 20% of commute trips are made by car- or vanpool. Overall, almost 13% of commute trips throughout the Thurston region are a shared ride. This underscores the need for adequate park-and-ride facilities.

Source: 2000 Census
7. Transportation Technologies

Goal: Use technology-based approaches to address transportation congestion, safety, efficiency, and operations.

Policies:

7.a Use transportation technologies to more effectively utilize the existing transportation system.
7.b Use transportation technologies to better integrate transportation modes.
7.c Make short-range technology investment decisions that support future technology implementation strategies.
7.d Look for opportunities to integrate transportation technology considerations into all projects.
7.e Recognize that transmittal of electronic information is an important function of a transportation system, and integrate this into transportation system evaluation, policies, and implementation strategies.
7.f Coordinate transportation technologies among jurisdictions and with other transportation planning regions.

Why Transportation Technologies Are Important:

Those who provide, maintain, operate, or use transportation facilities are finding increasing benefit from the use of technology. These technologies have tremendous benefit for improved communications, increased coordination within and among government agencies and other organizations, and safer and more efficient travel conditions. They are powerful tools in the effort to maximize system performance and safety.

Challenges for Transportation Technologies:

Effective deployment of technology strategies requires coordination among agencies and divisions that have often never worked together. New ways are needed to think about problems, and consider and implement solutions. This also requires compatible protocols for system design, which may mean relinquishing proprietary systems to accomplish the full benefit of these investments.

Public Comment and Input:

TRPC is working with a variety of transportation providers to further define and implement a long-range technology plan and deployment strategy for the Thurston region. Participants in this process include those who build and maintain the transportation network as well as those who rely on it to provide services and emergency assistance. They speak to the importance of technology doing what needs to be done efficiently and cost-effectively, even if they don’t use the words “ITS” or “Intelligent Transportation Systems.”

“Our biggest challenge is the human one – of being able to get in contact with someone when you need to. That (2001) earthquake was a major challenge – the phone system was jammed with calls outside the county trying to come in. It took me six or seven hours to get through to the department from where I was.”
“Customers could use more real time traffic information. Anything that helps our customers avoid traffic and move freight faster… Our stretch of I-5 is more competitive than Seattle or Tacoma because of less I-5 traffic. If I-5 is not viable, then the Port is not viable.”

“Freight is moving towards the technology of a paperless truck. For truckers, the weigh station by-pass is a major issue.”

Measures to Support Transportation Technologies Objectives:

- Update the regional ITS (Intelligent Transportation System) architecture as necessary to ensure it remains a relevant and useful tool for guiding transportation technology decisions and investments.

- Develop an implementation strategy for a center-to-center radio connection between the Washington State Patrol Region 1 Dispatch, WSDOT Tacoma Traffic Management Center, and Capitol Communications Enhanced 911 (CAPCOM).

- Develop an inter-regional deployment strategy to link Thurston County transportation and emergency service providers with those in Pierce, King, Kitsap, and Snohomish counties using a government-dedicated, alpha-numeric pager system.

- Pursue funding and potential partnerships for short- and mid-term deployment strategies identified in Intercity Transit’s technology plan.

- Encourage the continued deployment of ITS technologies along I-5 and US 101, such as traffic cameras, variable message signs, road and weather information systems, and highway advisory radio.

- Consider ways to improve the traditional scoping and design process for transportation projects that include technology elements. As appropriate, promote system integration, coordination, and resource sharing to enhance operations, safety and cost containment.

- Explore new technologies to improve the availability and dissemination of schedule, route, transfer, and other transit service information.

- Implement technology-based system management devices that improve transit operating efficiency along primary routes as congestion increases in these corridors.

- Support efforts to expedite statewide implementation of the 511 Traveler Information System, and other systems that help travelers plan a trip.

- Create a regional source of traffic and traveler information, consolidating local, regional, state, and private sector transportation information for easy access. Coordinate with other regional, state and interstate resources.

Did You Know…?

Every minute that lanes on Interstate 5 are blocked due to an incident creates 5-10 minutes of back-up. In other words, an accident that closes I-5 for 30 minutes can result in 2½ hours or more of back-up.

Source: WSDOT
8. Freight Mobility

Goal: Promote efficient, cost-effective and safe movement of freight in and through the region.

Policies:

- **8.a** Promote access among highways and other major freight corridors, and among the region’s intermodal transportation facilities and industrial areas.
- **8.b** Increase the amount of freight that is moved by rail to enhance efficiency, productivity, safety, and mobility.
- **8.c** Reduce weather-induced weight restrictions on streets, roads, and bridges that are important freight routes.
- **8.d** Review transportation and/or land use actions’ potential conflicts with freight movement, and address outstanding issues as part of the action.
- **8.e** Minimize conflict caused by the growth of freight movement into and out of industrial areas in highly urbanized settings.
- **8.f** Promote policies and design standards that minimize congestion impacts on local streets caused by delivery trucks, while maintaining economic support to businesses and services.

Why Freight Mobility Is Important:

The ability to efficiently move goods to and from market is a critical element of a sound economy. Whether that means transporting raw materials into manufacturing centers and finished products out, or moving goods and supplies on time to local retailers, the specific mobility needs of freight must be considered.

Challenges for Freight Mobility:

- As traffic increases, so do the impacts of big trucks on roads, so more investments are needed in the system to accommodate freight. Large trucks also require more turning space than other vehicles, take up more room in intersections and city blocks, and wear pavement more quickly than automobiles. These big rigs and their smaller kin in the local delivery fleet feed the economic engines of the region.
- Rail can only serve a portion of the region’s freight mobility needs. Even if more freight rail opportunities were available, the need for highway access would still be strong.
- While some freight moves at night, much is moved by day. This leads to conflicts at major highway intersections and industrial centers like Fones Road at Pacific Avenue. It also leads to operational conflicts on city streets as local delivery vehicles stop to off-load goods.
- Heavy gravel and log trucks contribute to increased road wear, especially in rural areas, requiring more frequent repairs to keep the roads safe.
Public Comment and Input:

Most people experience freight and goods movement through their own interactions in a car.

“Freight rail is important because if it’s not on a freight car I have to drive around it on I-5.”

“Nobody pays much attention to freight rail, but if we could utilize that part of the transportation system better than we do then we could take a lot of trucks off the highway. And trucks on the highway are a huge usage factor.”

While people are not overly fond of big trucks, many recognize the need for a transportation system that balances the mobility needs of both people and goods.

“It’s a real balancing act to meet the increasing needs of trucks that serve businesses with the driving needs of citizens. Back when our roads were built, most of them weren’t planned for the kind of traffic that they’re serving today, and the weight of some of that traffic. It’s a tough balancing act. But we have to remember that our transportation system needs to meet the needs of both business and resident. We have to co-exist.”

Measures to Support Freight Mobility Objectives:

- Deploy technologies on freight corridors that improve predictability of travel time for freight, such as weigh-in-motion devices, automated truck counters, and enhanced signal timing.
- Identify and address deficiencies on key streets, roads, and bridges that limit freight mobility.
- Develop a coordinated strategy that identifies existing and future freight mobility problems and opportunities, and ways to maximize the use of ship, rail, air, and truck in an efficient multimodal freight transport system.
- Regularly review and update the region’s Freight and Goods Transportation System (FGTS), which designates important freight routes on state and local facilities.
- Monitor federal and state legislation regarding truck size to ensure that proposals do not result in adverse increases in legal size or undue restrictions on local governments’ ability to regulate truck size and weight on local streets.

Did You Know...?

As a percent of total traffic, trucks account for 26% of all southbound traffic leaving Thurston County and entering Lewis County on I-5 from 6am – 6 pm, and 35% of all traffic headed southbound from 6pm – 6am. Source: WSDOT Traffic Data Office, 2001 data for site R019.
9. Streets, Roads, and Bridges

Goal: Establish a street and road network that provides for the safe and efficient movement of people and goods while supporting adopted land use goals.

Policies:
9.a Support design and construction of multimodal streets and roads.
9.b Encourage new regional connections for cross-town or cross-region travel that provide more direct routes and reduce vehicle miles traveled, where those connections do not promote sprawl or otherwise undermine adopted land use plans.
9.c Limit the addition of travel lanes to those areas that can demonstrate long-term benefit, and where an increase is determined to be the best alternative.
9.d Avoid widening any local arterial or collector to more than two through lanes in each direction and an auxiliary turn lane where warranted (five lanes, maximum) to preserve an acceptable community scale for the Thurston region, and minimize transportation impacts on adjacent land uses.
9.e Use roundabouts as a tool for safely and efficiently managing the flow of traffic at intersections when they are an appropriate alternative to traffic signals or stop signs.
9.f Consider the use of access management techniques to preserve roadway capacity, minimize operating inefficiencies resulting from land use and development pressures, and increase overall system safety.
9.g Develop an interconnected grid of local streets and roads to increase individual travel options and neighborhood connectivity while improving efficient use of the overall regional network.
9.h Ensure that street, road, and bridge projects adequately meet transportation needs, function in harmony with their surroundings, and add lasting value to the communities they serve.

Why Streets, Roads and Bridges Are Important:
Streets, roads, and bridges are the backbone of the region’s transportation network. They support the mobility needs of cars, trucks, and buses, and in most circumstances, bikes and pedestrians. Streets and roads connect residences to businesses and activity centers, providing access for essential services such as waste disposal, emergency response, and mail delivery.

Challenges for Streets, Roads and Bridges:

- Many people face a daily challenge of congestion on the way to and from work.
- Finding sufficient funds to take care of existing streets, roads, and bridges is a growing challenge for government. Pavement preservation, retrofit of old rural roads to modern standards, and safety projects often compete for the same limited resources.
Another challenge is designing safe and efficient facilities that can carry growing numbers of vehicles through neighborhood corridors without having undue impact on the quality of life in those neighborhoods.

Public Comment and Input:

When talking about the condition of streets and roads in the Thurston region, residents support taking care of the existing system over trying to solve congestion with more widening.

“I think we should focus on better connections instead of widening. Widening roads is very costly. And that widening actually increases traffic, so we don’t solve the problem.”

“There are bridges around here that are antiquated and need to be replaced. That’s a higher priority than road widening.”

“We have lots of little things – like people turning left in the middle of a block, or short left-turn signal timing – that make the congestion even worse.”

“What we need is a grid system of streets. There are no connector streets. We have to get on the highway to go half a mile, and that puts a burden on the highway. If we had better connector streets we could save the highway capacity for through-use. A grid system would help make the highway work better and relieve congestion.”

People are frustrated by congestion, although there’s a growing awareness it isn’t a simple problem to address.

“Congestion is not just a function of the amount of growth we have, but how and where it occurs.”

“Part of the problem is our reliance on I-5 to get around this local area. That is going to grow as a problem.”

Measures to Support Streets, Roads and Bridges Objectives:

- Identify key east-west and north-south corridors essential to the region’s traffic flows, and develop comprehensive mobility and access strategies for them.

- Identify priority regional connections and determine rights-of-way. Undertake early, comprehensive public education and involvement to increase awareness of the need for these corridors and how to complete these connections.

- Explore the reasons why implementation of interconnected streets policies is so difficult, and identify strategies for improving that implementation.
10. Public Transportation

Goal: Provide an appropriate level of reliable, effective public transportation options commensurate with the region’s evolving needs.

<table>
<thead>
<tr>
<th>Policies:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>10.a</td>
<td>Support implementation of Intercity Transit’s “The Route Ahead” long-range regional transit plan, which emphasizes trunk and primary routes serving core areas and designated strategy corridors.</td>
</tr>
<tr>
<td>10.b</td>
<td>Increase the share of all trips made by public transportation.</td>
</tr>
<tr>
<td>10.c</td>
<td>Invest in the commuter vanpool program to provide cost-effective, flexible alternatives to driving.</td>
</tr>
<tr>
<td>10.d</td>
<td>Develop inter-regional transit partnerships for long-distance commute trips to and from destinations outside Thurston County.</td>
</tr>
<tr>
<td>10.e</td>
<td>Provide safe, convenient, and cost-effective transportation service to youth, elders, people with disabilities, or other people with special needs.</td>
</tr>
<tr>
<td>10.f</td>
<td>Increase awareness of public transportation and how to use it through expanded education and public information tailored for various age groups and interests.</td>
</tr>
<tr>
<td>10.g</td>
<td>Consider a broad range of public transportation programs and services, including but not limited to local street trolleys, bus rapid transit, flex car programs, commuter rail, and high speed passenger rail to ensure a full mix of options for meeting transportation needs as they evolve.</td>
</tr>
</tbody>
</table>

Why Public Transportation Is Important:

Public transportation can be a very efficient way to move people in urban communities and can stimulate compact urban development. Besides supporting urban mobility, public transportation is a critical part of the social safety net that ensures access and independence for many members of the community, including those who do not own or drive a car. A good public transportation system is an indicator of a well-developed, complete urban network.

Challenges for Public Transportation:

- The Thurston region contains large expanses of relatively low-density residential areas isolated from activity and employment centers. This type of land use is difficult and expensive to serve with fixed route public transportation.

- To support transit, adopted land use plans promote infill and mixed-use urban development. However, large government facilities and major employers often locate outside centers targeted for such development and cannot be served efficiently by transit. Neighborhood opposition may block infill. The cumulative effect of these individual land use compromises undermines the ability of public transportation to fulfill its role as part of a mature urban transportation system.

- Public transportation has been criticized by residents living in rural or isolated urban areas who expect efficient, inexpensive transit service. Traditional transit service can’t serve these areas well and, some argue, providing it is counterproductive to other Growth Management goals. Yet viable alternatives are not readily available.
Public Comment and Input:

Views on public transportation encompass its urban mobility function as well as the important role it plays in helping people with disabilities maintain their independence and dignity.

“I believe people should have an opportunity to work, and many people are stuck at home if they don’t have transportation. Mass transportation is really important to enable people to work. It’s important to the economy.”

Dial-a-Lift is a service many residents hope they’ll never need, but value in case they do.

“When we look at transit for people with disabilities we realize we might need it ourselves someday, or need it for someone in our family.”

People are also increasingly aware of the potential role public transportation can serve in linking communities throughout the Puget Sound region.

“My hope and my dream is that the (Puget Sound Region’s) Sounder will be really effective, and that they’ll extend it down to this area.”

Finally, people recognize that public transportation includes a wide variety of mobility services and that an effective approach will tailor the appropriate service to the specific need.

“Public transportation doesn’t have to be 40-foot buses. It can be anything that gets people where they need to go.”

Measures to Support Public Transportation Objectives:

- Place a high priority on the availability of public transportation service and access when evaluating alternative locations for public facilities. Make special effort to keep these facilities and activity centers close to other transit-friendly areas or adjacent to Intercity Transit’s primary service corridors.

- Develop a commuter rail strategy for Yelm-to-Lakewood service. Include coordination with the Regional Transit Authority, Intercity Transit, and short-line rail operators, as well as land use strategies for managing the projected impacts of this service on the Yelm community and its surrounding areas.

- Work with community partners to explore alternate forms of public transportation, including the applicability of street cars or trolleys along the old routes in downtown Olympia, the economic viability of a Flex-Car program modeled after that in Seattle and Portland, and the long-term feasibility of bus rapid transit (BRT) as a strategy for linking Lacey, Olympia, and Tumwater.

- Identify and implement innovative models and partnerships with non-profit and other groups to supply life-line services to people in the outlying areas where traditional bus or Dial-a-Lift service is not feasible.

- Explore ways of improving Intercity Transit bus service to area high schools, including potential replacement of school bus service with I.T. service where appropriate.

Did You Know…?

Intercity Transit underwent massive service cuts in 2000. However, by eliminating its least productive routes, I.T. increased its ridership productivity from 17 passengers per vehicle revenue hour in 1997 to 21 in 2002. That’s a 24% increase in overall ridership productivity.

Source: Intercity Transit, 2002 Annual Report
11. Biking

Goal: Increase the share of all trips made safely and conveniently by biking.

Policies:

11.a Develop a continuous, safe, and convenient regional bicycle network that functions as an integral part of the overall transportation system.

11.b Provide safe and convenient bicycle routes to all schools in the region.

11.c Invest in a regional network of contiguous and connected north-south and east-west dedicated corridors to serve as the backbone of the non-motorized system.

11.d Provide bicycle parking facilities at existing and future transit centers, park-and-ride locations, train stations, and other multimodal facilities.

11.e Encourage provision of short- and long-term bicycle parking and other supporting facilities at schools, employment sites, and major activity centers.

11.f Develop an education program for bicyclists to increase understanding of bicycling laws and encourage appropriate riding behavior.

11.g Consider long-term strategies for funding bicycle facilities and services.

Why Biking Is Important:

A well-balanced transportation system offers a variety of safe and convenient travel options. Many people are able to take advantage of biking for some of their trips – children pedaling to school and urban commuters riding to work. Bicycling also furnishes independence for those who are not able to drive. It is a “clean” mode of transportation that is good for the environment and the health of the cyclist, and an integral part of the overall regional transportation strategy. State law recognizes bicycles as vehicles and many local governments provide safe facilities consistent with overall traffic demands and local resources.

Challenges for Biking:

- Many people still see bicycling solely as a recreational endeavor instead of a legitimate mode of transportation, and oppose spending transportation funds on bicycle facilities.

- Despite compliance by a majority of riders, cyclists who don’t obey the rules of the road exacerbate negative public opinion.

- The cycling experience – much like that of walking – is influenced greatly by the actions of drivers. Many motorists don’t see cyclists and inadvertently crowd or cut them off. Additionally, the difference in speeds between driving and biking can create an intimidating travel environment for cyclists, which limits the willingness or ability of people to bike.
Public Comment and Input:

People often offer strong opinions about bicycling.

“Bikes drive me insane!”

“We have to learn how to accommodate bicycles on our roads because bikes are resented in this community, and that’s ridiculous!”

Unlike some other forms of transportation, though, those who don’t ride are often opposed to investments for this mode.

“We shouldn’t allow bikes on the road, period. They shouldn’t be allowed to mix with cars. I don’t want to pay for separate bike lanes, but I don’t want bikes on the road. I think separated bike trails are important to have, but the bike clubs should pay for them.”

“My feeling is that we’re putting a lot of money into bicycling in a community that makes very little sense, weather-wise. I mean, I know there are die-hards out there who’ll ride their bikes in any kind of weather. But for us to put millions of dollars into that side of the equation boggles my mind.”

As local and regional investments make progress toward an integrated bike network, more people recognize that cyclists add to – not detract from – the community.

“Olympia added a new bike lane past my store on 4th Avenue. Bicycle traffic has increased dramatically, regardless of what letters to the newspaper say. And I have from 4-10 bike customers coming into my store each week, where I didn’t have any before. It takes a while to catch on, but the more we do it the easier it is.”

More drivers support the need for bike lanes as a safety feature.

“I worry a lot when I’m passing a bicyclist who is in the driving lane because there is no bike lane. I feel safer in my car if the bicyclists have their own lane of travel and I have mine.”

Measures to Support Biking Objectives:

- Reconvene a regional bicycle advisory committee, with diverse representation, as a constructive way for regional bike interests to provide input into policy discussions and address issues.
- Initiate a public discussion on the function of bike lanes and how they’re financed to determine whether current funding mechanisms are appropriate.
- Explore the feasibility of levying and administering a bicycle license fee or other user fee. Revenues from such a fee could underwrite a variety of bike safety and bike education efforts for both riders and drivers, and could provide facilities and signage.
- Incorporate in-pavement or other effective sensing devices at signalized intersections to facilitate responsible and efficient on-street bike riding.
- Update the Trails Plan, extending its scope region-wide. Priorities include completing connections between Tumwater and the Chehalis-Western Trail, and strategies for completing the westside “Capitol-Campus-to-Capitol Forest” bike network.
- Continue to include appropriate biking and walking improvements (such as wide shoulders, sidewalks and bike lanes) as part of road projects.

Did You Know...?

In May 2002, 611 people participated in Climate Solution’s annual Bicycle Commuter Challenge. About 70% of the participants turned in their mileage logs at the end of the month. Those logs accounted for over 52,100 miles pedaled to and from work in one month.

Source: Climate Solutions
12. Walking

Goal: Increase the share of all trips made safely and conveniently by walking.

<table>
<thead>
<tr>
<th>Policies:</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.a Provide a direct, safe, interconnected pedestrian network that supports existing and desired land uses.</td>
</tr>
<tr>
<td>12.b Construct safe sidewalks and effective crosswalks within an appropriate radius of every school in the region.</td>
</tr>
<tr>
<td>12.c Provide frequent pedestrian crossings, especially in urban areas, along primary transit routes, and near activity centers.</td>
</tr>
<tr>
<td>12.d Develop direct, “cut-through” connections for pedestrian and bike travel within and among neighborhoods and destinations such as major transit routes, schools, activity centers, and other destinations where pedestrian travel is anticipated.</td>
</tr>
<tr>
<td>12.e Require pedestrian-friendly building design in areas where foot travel is likely and encouraged, such as city centers and regional activity centers.</td>
</tr>
<tr>
<td>12.f Provide street lighting, trees, benches, and other elements that make walking safe and pleasant.</td>
</tr>
</tbody>
</table>

Why Walking Is Important:

Every traveler is a pedestrian at the beginning and end of the trip, since even drivers need to move safely and conveniently to and from the car. Beyond this most basic need, though, walking is often the only way that some members of the community can visit parks, shops, libraries, or neighborhood friends. This is important not just for their independence and mobility, but also as an effective way of countering the effects of the nation’s sedentary lifestyle. When it comes to city centers and activity centers, pedestrians are often referred to as the “indicator species” of a healthy downtown. Often, in a well-designed and established downtown area, travel is much easier on foot than by car. Walking is healthy, easy on the environment, cost-effective, and, with the right facilities and community design, a pleasant way of traveling.

Challenges for Walking:

- For decades, communities built around the car, often resulting in an inhospitable environment for walkers. Increasing density in some areas and speed in others creates the need for facility improvements to support access and safety for walkers.
- Until recently, sidewalks were sometimes viewed as an optional amenity to be funded and maintained by adjacent property owners, not as an integral part of the transportation network.
- Fast moving vehicles on larger streets and roads make walking alongside unpleasant and often dangerous. Effective measures are needed to discourage speeding and unsafe driving, such as stricter law enforcement or innovative design that encourages different driving behavior.
Public Comment and Input:

In discussion groups and public meetings, the need for sidewalks is uniformly recognized.

“Sidewalks in neighborhoods and near schools are important. This should be a priority. Especially to provide access within one mile of schools. Otherwise we have to provide the kids with school bus transport. Sidewalks would be cheaper.”

“Downtown sidewalks are important. It’s too dangerous if there are no sidewalks or if the sidewalks are in bad shape, especially when its congested with people and traffic.”

“I think sidewalks have a lot of bang for the buck, not just transportation–wise, but for community livability.”

Measures to Support Walking Objectives:

- Continue to include appropriate pedestrian facilities as a part of all publicly and privately funded transportation projects.
- Make completion of gaps in the sidewalk system a priority, especially in city centers, core areas, urban corridors, and within a quarter mile of any major activity center.
- Provide frequent and convenient pedestrian access points between on-street sidewalks and dedicated non-motorized facilities like the Chehalis-Western Trail, the Yelm-to-Tenino Trail, or the future Olympia Woodland / Lacey St. Clair Trail.
- Ensure safe sidewalks within ½ mile of all schools.
- When feasible, incorporate public places and pedestrian plazas in city center building design.
- Use design features like “bulb-outs” to minimize the street-crossing distance for pedestrians in busy intersections. Incorporate other appropriate design features to slow vehicular travel speed in neighborhoods and activity centers where pedestrians are common.
- Develop more public funding options to plan, construct, and maintain sidewalks and pedestrian facilities where they support transportation priorities.

Did You Know…?

Walking accounts for about 8% of all trips made region-wide. In areas with a compact mix of land uses – such as Olympia’s city center – almost 20% of all trips are made on foot.

Source: 1998 Household Travel Survey and 2025 Travel Demand Model
13. Rail

Goal: Ensure the long-term viability and continued use of existing rail lines in the region for freight and passenger rail travel.

Policies:

13.a Support appropriate short- and long-term opportunities for the potential shared use of freight rail lines for commuter rail or other passenger rail opportunities.

13.b Facilitate the acquisition and continued operation of short-line railroads by local jurisdictions where needed to support current and future economic development needs.

13.c Use design techniques, ITS and operations coordination to minimize potential conflicts between trains and other modes of transportation, and between trains and adjacent land uses.

13.d Prioritize the acquisition of rights-of-way threatened with abandonment in order to preserve these corridors for potential high capacity transportation use in the future.

13.e Participate in the partnerships necessary to foster efficient, high-speed passenger rail service in the Pacific Northwest rail corridor.

Why Rail Is Important:

Rail offers one of the most cost-effective and efficient forms of transportation for many mobility needs. Freight trains can quickly and profitably move many raw and finished materials long distances. Heavy goods like gravel and logs can be shipped by rail, reducing significant wear on roads. Commuter trains offer predictability and affordability to long-distance commuters in major metropolitan areas like Seattle. Intercity passenger rail is increasingly popular for travel between Eugene, Oregon and Vancouver, B.C., helping to ease pressure on highways and airports. Rail service also benefits some community development patterns. It stimulates complementary land use activities, such as industrial growth in an area served by freight rail, or transit-oriented development in areas served by commuter rail.

Challenges for Rail:

- A pressing regional challenge is the loss of transportation corridors through rail line right-of-way abandonment by Burlington Northern Sante Fe or Union Pacific, the region’s two primary rail owners. Without a sufficiently funded, proactive acquisition strategy, these difficult to assemble corridors could be lost to future transportation uses.

- Another challenge is establishing passenger rail service on tracks owned by the major railroads, whose primary business is moving freight.

- Making shortline connections to the major railroads, for either freight or passenger movements, can be challenging, as is maintaining shortline tracks to keep them operational.

- Land use patterns in the western United States dictate that rail travel complements – not replaces – car, bus and truck travel, requiring good intermodal transfer locations and facilities.
Public Comment and Input:

Train travel appeals to a wide segment of the public.

“If we had commuter rail to Seattle, you know you'd be there in time for work or a meeting, whereas on the freeway, you can’t be certain. There are always tie-ups. The freeway has gotten to the point that we need to look at rail alternatives.”

“You asked if I’d take the bus if it were more frequent and quicker, since I supported light rail. No. It's a confidence thing, even if it’s just perception. The times I’ve been on buses, it’s been really frustrating. I don’t know where they’re going to stop. But when I go to Vancouver (B.C.), the train stops are predictable. I understand the rail system so it boosts my confidence to try it.”

“We should be working now to secure access to existing rail lines so we can increase passenger service between Portland and Vancouver. Right now, the best we can do is to wait in line behind the freight trains, and that’s not going to get us anywhere as a region in the future.”

People also appreciate the value of freight rail for its role in economic development and in relieving highway congestion.

“Freight rail is important for the economy of the county as well as for improving highway capacity and safety.”

“I support freight rail because of roadway safety aspects. It gets trucks off the road. And it’s important for our economy.”

Measures to Support Rail Objectives:

- Update and expand the Regional Rail Strategy to ensure information is current, realistic strategies are in place to keep rail corridors intact if faced with abandonment, options are explored to expand passenger and freight rail services in Thurston County, and safety issues are identified and addressed.
- Coordinate efforts among Tacoma, Yelm, Rainier, short-line rail operators, and public and private economic interests to evaluate the feasibility of increasing rail travel along the Tacoma Rail Mountain Division line through eastern Thurston County.
- Explore the long-range potential of shared use of the eastern segment of the St. Clair line for freight rail and commuter rail, with a commuter rail terminus and its associated park-and-ride needs in the vicinity of Marvin Road and Union Mills Road.
- Identify rail segments that conflict with safe and efficient operation of streets and roads – such as the overpass on Rainier Road north of the City of Rainier – and develop an implementation and funding strategy for retrofitting these facilities to improve safety.
- Support the state and other partners in promoting very-high speed passenger rail service between Vancouver B.C. and Eugene, Oregon.
- Identify opportunities to facilitate development of dense urban centers near existing and future rail stations.

Did You Know...?

By 2018, WSDOT anticipates 13 round trips per day between Lacey’s Centennial Station and both Seattle and Portland. Travel time between Centennial Station and Portland is expected to be about one and a half hours, and just under an hour to Seattle.

Source: WSDOT, Amtrak Cascades Plan for Washington State
14. Aviation

Goal: Provide an appropriate level of facilities and services to meet the general aviation needs of residents and businesses in the region.

Policies:

14.a Encourage coordination between the Port of Olympia, the cities of Olympia and Tumwater, and Thurston County to maintain consistency between adopted land use plans and long-range airport development strategies, and to encourage land use compatibility in affected areas adjacent to the airport.

14.b Maintain and upgrade the Olympia Regional Airport for small jet and prop aircraft.

14.c Support efforts to maintain regional passenger air service at the Olympia airport.

14.d Develop a multimodal transportation system that better serves the needs of air travelers by including viable travel alternatives to the Olympia Regional Airport and to SeaTac International Airport.

Why Aviation Is Important:

Air travel in the Thurston region serves passenger and freight mobility. Those with access to private planes and helicopters enjoy a convenient alternative to highway travel and increasingly time-consuming procedures at Sea-Tac International Airport. Small, commercial planes offer that same convenience to business travelers. Air travel also provides expedient options for time-sensitive missions like helicopter med-evac, or for access to remote areas. For certain freight delivery needs, air travel into and out of a small, regional facility like the Olympia Airport is a timely alternative to highway delivery.

Challenges for Aviation:

- State and federal laws govern the kinds of land uses that can be located within a certain distance of public use airports. These laws necessitate increasing coordination and communication between airports and their surrounding jurisdictions.

- Once located at the outskirts of the urban area, the Olympia Airport is increasingly surrounded by industrial, office, and residential uses. As the vacant lands around the airport develop, the Port is faced with fewer and more costly options for revising runway alignments or expanding the size of the mandated safety buffer zone off the runways.

- The Port’s ability to retain a commercial air carrier has been challenged over the years by insufficient market demand. This makes it difficult to establish the facilities and critical user base needed to ensure such a venture remains profitable in an industry plagued with financial troubles.

- Many people are concerned about the environmental impacts of increased air travel, whether from the high fuel consumption or pollutants and noise impacts on nearby neighborhoods. If aircraft size and flight frequencies increase, even long-established neighborhoods and communities far from the airport will feel increased impacts.
Public Comment and Input:

Since the debate in the early 1990s regarding the possible use of the Olympia Airport for Sea-Tac’s “third runway” expansion, airport activities have not generated any comment in TRPC’s public outreach efforts. Absent such comments, this section focuses instead on long-range plans for the airport, to promote awareness of the region’s planned aviation future.

Activities at the airport are under jurisdiction of the Port of Olympia, and are guided by periodic updates to the Airport Master Plan developed in 1990. That Master Plan includes alternatives analysis and recommendations for short- and long-range development strategies to accommodate projected growth in commercial aviation. The most recent revision, an August 2003 update to the Airport Layout Plan (ALP), identifies allowable land uses on the airport property, and extends aviation forecasts to 2020. The 2003 ALP Update:

- Considers the Port’s difficulties in attracting and retaining commercial aviation ventures at the airport, and emphasizes instead the steady growth in corporate and commuter jet activity.
- Identifies the Olympia Airport’s proximity to SeaTac, the strong growth in corporate plane travel out of the airport, and to a lesser degree, trends in commercial regional carrier service as factors that make it difficult to attract and retain commercial airlines at the airport.
- Includes analysis of existing facilities, take-off and landing needs by type of aircraft, and impacts of weather on operating conditions. The ALP concludes that 2020 projected air travel can be accommodated at the existing facility by shifting Runway 17-35 about 758 feet to the south, improving taxiways, and expanding the corporate aviation area and commercial passenger terminal facilities as needed to meet demand. The ALP emphasizes that construction of these support facilities should be based on actual market demand and not on forecasted demand.
- Recommends land use development and infrastructure investments for areas identified in the past for a potential future new runway, laying to rest the question of whether a new runway is in the airport’s future.
- Entails modifications to the street and road system south of the airport to accommodate changes to the alignment of Runway 17-35.

Measures to Support Aviation Objectives:

- Periodically review Olympia Airport Master Plan forecasts and assumptions to ensure that long-range goals and objectives for the airport are consistent with other local and regional objectives. In particular, ensure long-range airport plans, Tumwater town center development plans and urban growth area plans are compatible. Pursue a focused sub-area study south of the airport, identifying impacts and appropriate strategies for the Port of Olympia, Tumwater, Thurston County, and WSDOT.
- Look for innovative public/private partnership opportunities between the Port of Olympia, commercial passenger airlines, Intercity Transit, and private transportation providers to deliver appropriate shuttle connections serving in-bound and out-bound scheduled commercial flights.
15. Marine Transportation

Goal: Provide an appropriate level of facilities and services to meet the region’s marine transportation needs.

Policies:

15.a Maintain a marine terminal for water-borne freight movement.
15.b Encourage coordination among the Port of Olympia, the City of Olympia and other stakeholders to maintain consistency between adopted land use plans and long-range marine terminal development strategies, including adequate truck and rail access.
15.c Consider long-term strategies for integrating maritime passenger service into the regional transportation system as alternatives develop.

Why Marine Transportation Is Important:

Puget Sound waterways are natural transportation corridors. Historically, marine transportation has been vital to this region and continues to be important for passengers, and domestic and international trade. Although passenger ferries in south Puget Sound have been replaced with other modes of travel, shipping continues through the Port of Olympia’s marine terminal, as well as privately owned facilities on Budd Inlet. Marine terminals are a limited commodity, given their location in a sensitive marine environment and the unlikely creation of new deep water ports.

Challenges for Marine Transportation:

- Marine cargo shipping into and out of the Port of Olympia is challenged by its location at the southern terminus of Puget Sound. Major ports of call in Seattle and Tacoma offer shorter trips and larger facilities designed to handle the massive trans-oceanic ships arriving from or departing to Asia.
- The Port of Olympia concentrates on breakbulk export logs or lumber shippers who may be overlooked by the bigger ports, or who need more customized service. The current trend in cargo shipping is toward the consolidation of containerized freight through the Ports of Tacoma and Seattle. The Port of Olympia is cultivating a reputation as a “specialty port” catering to the needs of the breakbulk and project cargo shippers.
- The ability of the Port to increase the output of its marine shipping terminal is contingent upon freight movement into and out of the Port area. The Port peninsula is surrounded by downtown Olympia as well as its own Swantown and Market districts. These areas are the focus of redevelopment and reinvestment efforts. As the downtown area becomes busier and built out, it will be increasingly difficult to move either freight trains or trucks through without negative impacts to the Port, the adjacent transportation system, and land uses.
Public Comment and Input:

TRPC’s community outreach efforts have not generated public comment on marine travel issues or opportunities. Hence, this section focuses instead on long-range plans for the Port’s marine facilities, to promote awareness of the region’s planned maritime future.

Activities at the marine terminal are under jurisdiction of the Port of Olympia, which is operating from its 1995 Comprehensive Plan. That Comprehensive Plan and periodic amendments to the Capital Facilities Plan provide guidance and recommendations for short- and long-range development strategies for the Port’s Ocean Terminal District to accommodate projected growth in water-borne freight trade.

- The Port’s strategic plan affirms the role of the Port of Olympia as the port-of-entry for international and domestic shipping by way of the marine terminal, with a commitment to continue growing and diversifying freight transported through the terminal.
- The marine terminal is a unique facility in limited supply. It is unlikely any new deep water ports will be developed on Puget Sound, given the environmental and economic climates. The Port’s Comprehensive Plan recognizes this uniqueness and infrastructure investment, and the importance of the marine terminal as a source of existing family wage jobs.
- Planned uses for the terminal area include industrial, commercial, warehousing, and accessory.
- The Comprehensive Plan identifies truck and rail routes necessary to make intermodal connections with the marine terminal. The plan includes a proposed truck route realignment for access to the Port Peninsula.

Measures to Support Marine Transportation Objectives:

- Periodically update the 1995 Comprehensive Plan to reflect changing conditions and evolving development strategies for the Port.
- Ensure that land use and market assumptions reflect short- and long-range priorities for redevelopment of land adjacent to the marine terminal, including the Port’s Swantown and Market Districts, and City of Olympia efforts.
- Identify any areas of conflict between future plans for the marine terminal and adjacent land use plans in Olympia, and develop a coordinated strategy with all affected interests for addressing those issues to ensure that all user needs are met.
- Monitor development of passenger ferry proposals for service into and out of Olympia. Incorporate any final implementation strategy into transportation and land use plans as appropriate.

Did You Know…?
The Port’s foreign waterborne trade in 2001 was 29,377 metric tons. The value of that trade - $6.4 million - accounted for about 1% of the State’s waterborne trade.

Source: U.S. Maritime Administration
16. Public Involvement

Goal: Convene on-going community discussions and public input into regional transportation planning and decision-making processes.

Policies:

16.a Provide broad-based, early, and continuing public involvement in all aspects of the transportation planning process.

16.b Ensure equal access to participation, including measures to ensure access to people and groups who have been traditionally underserved by the existing transportation system or public processes.

16.c Promote increased community understanding of the relationship between land use choices and transportation consequences facing communities at local, tribal, regional, and state levels.

16.d Engage in consultation with tribal governments within the region to ensure tribal participation.

16.e Explore innovative participation techniques to increase overall public involvement.

Why Public Involvement Is Important:

When it comes to transportation policies and investments, the region faces difficult choices and trade-offs. The public has a vested interest in the outcome, whether in 20-year regional decision-making processes or day-to-day local decisions. Effective public input informed by an understanding of issues and choices produces better decisions and results.

Challenges for Public Involvement:

- Transportation issues have many different facets. To realize effective involvement, the community needs an opportunity for on-going education and dialogue to understand the issues, and evaluate choices and consequences. However, personal time is limited and valuable, discouraging in-depth lengthy education efforts. Government is challenged to make the best use of the public’s time with meaningful process, clear and effective materials, and sincere consideration of input.

- Government is also challenged to gather the views of those who may be intimidated by the process or unable to participate by traditional means. Special efforts are needed to make information available in alternate formats and languages.

Public Comment and Input:

People find that the effectiveness of public process sometimes has to do with how it's conducted.

“Don’t involve the public and get their input, and then do something different. There’s a perception that government just doesn’t listen. The public gets jaded.”

“You have to be clear about the information you’re requesting. Are you truly asking for input? Has a decision – for the most part – already been made? If so, tell us that. Be clear on what the information will be used for.”
“I think you need to be constantly looking for ways to communicate with the public in an interactive, two-way forum…. It is an iterative process, and it’s painful at times. And in some cases, it’s art. But you have to do it.”

The topic is an important motivator to public participation.

“Transportation isn’t really a high priority for me when I’m looking for information on the Internet. I’m satisfied as long as I can get from Point A to Point B.”

“Nowadays, for people to go to meetings, the issue has to affect them directly.”

“The people who show up at meetings are 99% against that project. The only reason people take the time to express their opinion is when it’s something they don’t want. ‘Majority opinion’ is an idealistic goal about how to pick projects and make decisions, but there’s a silent majority that has to be considered.”

“I don’t think you have to worry about reaching out to people. You do a good job of that. Your problem is that people aren’t interested in what you have to say. I don’t know that you can educate the public at large about what government is doing if they don’t give a hoot about it. I think they have to become involved in their own way.”

Measures to Support Public Involvement Objectives:

- Create and implement a curriculum designed to educate citizens on the local, tribal, regional, state, and federal roles in transportation decision-making. Include information on how and when to become involved and key points of contact. This program could be used to educate community members on a regular basis, empowering them to play a more active role in their community’s transportation decision-making process.

- Use the internet for on-going community dialogue on a range of transportation topics, including funding priorities, trade-offs, revenue options, and the effects of individual choices on regional consequences. This could also provide a virtual forum for comment on specific plans or policies.

- Take advantage of data generated by the COMPASS 2000 study to more effectively tailor outreach efforts to minority and socio-economically disadvantaged communities.

- Routinely offer “Transportation 101” briefings to new elected officials and planning commissioners on local, state, and federal transportation issues and opportunities.

Did You Know...?

Region-wide, 3.5% of the population is unable to speak English very well. In fact, over 1,300 households are linguistically-isolated, meaning no one in the home speaks English well. Lacey and Olympia have the highest concentrations of linguistically-isolated households, 23.4% and 26.9% of the regional total, respectively. Asian and other Pacific Island languages, and Spanish, are predominant in these households.

Source: 2000 Census
17. Intergovernmental Coordination

Goal: Ensure transportation facilities and programs function seamlessly across community borders and between regions.

Policies:

17.a Encourage coordination among the local, regional, and state governments in the operation of the transportation system.

17.b Work with government agencies to coordinate land uses, implement county-wide planning policies, and refine the tools needed to accomplish land use plans.

17.c Coordinate the development and update of local, regional, and state transportation plans to ensure consistency.

17.d Serve as a regional forum for the exchange of ideas, information, and issues among local jurisdictions and tribal, state and federal transportation authorities, to facilitate informed, reasoned decision-making processes.

17.e Establish government-to-government relations with tribal governments within the region to encourage coordination of land use and transportation plans.

Why Intergovernmental Coordination Is Important:

Travelers expect a high level of transportation service throughout the region and seamless transitions between communities. Therefore, the transportation network should function like a single system, not a collection of independent systems. Governments at the state, tribal, local, and regional levels must coordinate their investments, policies, operations, and standards to ensure this continuity.

Challenges for Intergovernmental Coordination:

- To function seamlessly across community borders, the transportation system must be planned, funded, and constructed in a coordinated way. This requires coordination among more than a dozen traditional transportation providers in the Thurston region alone and many service providers who rely on that system to supply assistance and mobility programs.

- Coordination of facilities and services is challenged by differences in funding abilities and processes, land use pressures, prioritization processes, time, and other government needs.

- A key challenge is the competitive nature of much of the region’s transportation funding, which often pits one community against another in the effort to secure scarce transportation revenue.

Public Comment and Input:

For many people, services and facilities operate so seamlessly that they are often unaware of the number of agencies responsible for their ease of mobility. But as more people become engaged in decision-making processes at all levels of government, awareness is growing of how decisions or actions in one community impact another. People expect governments to work together.

“Part of our problem with all issues – not just transportation – is that we are one community. But we don’t understand that, or at least we don’t always act like that.”
“Can’t we get government agencies to work together to be more efficient?”
“I think part of our problem is that we have a regional issue here, and we have several different jurisdictions in Thurston County each trying to find the solution on their own.”

Residents are more aware of our region’s connection to the greater Puget Sound area.

“We can’t think of ourselves as ‘outside’ the greater Puget Sound region. We need to be planning our future public transportation with the rest of that region. We are short-sighted if we think we can isolate ourselves from the rest of the growing megalopolis when we’re located right on the I-5 corridor. So we need to plan for it to minimize its impact and increase our options.”

Some people believe better coordination is needed.

“You can’t have transit with low residential densities. But when we propose the kind of communities that can benefit from transit, we can’t get them approved. We’re crucified by the public for proposing high density development and government listens to them. You’ve got one hand of government over here saying, ‘This is what we want,’ and when we bring it to them, another hand says, ‘No, you can’t do that.’ You’ve got to make up your mind.”

Did You Know…?
TRPC was created in 1967, to provide an intergovernmental forum for addressing land use and transportation issues, and other common concerns of its members.
Source: TRPC

Measures to Support Intergovernmental Coordination Objectives:

- Continue to explore common issues and identify appropriate next steps through TRPC’s policy maker forums.
- Reach out to Grays Harbor, Lewis, Mason, and Pierce Counties to identify possible issues meriting further inter-regional coordination. One example may be the need to develop an inter-regional corridor strategy for State Route 507 to ensure that increasing through-put does not jeopardize livability of the small rural communities who call SR 507 “Main Street.”
- Increase communication and understanding between tribal and non-tribal governments.
- Continue active participation on established intergovernmental bodies and look for ways to increase the effectiveness of these organizations.
- Explore new ways of coordinating and delivering transportation service among various providers and agencies to leverage investments and improve public service. One such example may be evaluation of service overlaps between school buses and Intercity Transit. Untapped opportunities may exist to share select service responsibilities and improve the delivery of service while reducing costs.
- Continue to educate elected officials, planning commissions and other decision makers on the relationship between land use and transportation, with an emphasis on public transportation. This common understanding recognizes that neither the transportation system nor land uses stop at community borders.
18. Environmental and Human Health

Goal: Minimize transportation impacts on the natural environment and the people who live and work in the Thurston region.

Policies:

18.a Protect water quality by minimizing impervious surface area and stormwater runoff where possible, and effectively treating and managing unavoidable runoff.

18.b Minimize road crossings through designated environmentally sensitive areas and habitat corridors to avoid fragmentation and degradation of the region’s open spaces and wildlife habitats.

18.c Use transportation planning, design, and construction measures that minimize negative impacts on priority fish-bearing streams.

18.d Develop a transportation system and support compact, mixed-use development policies that curb the growth in miles of motor vehicle travel as a means of increasing regional energy efficiency and reducing environmental impacts.

18.e Promote use of alternative fuels and technologies that reduce pollution emissions and other environmental impacts from motorized vehicles.

18.f Use compact urban development and the non-motorized forms of transportation it supports as a means of encouraging overall physical activity and community health.

18.g Ensure that minority populations and people with low incomes do not incur disproportionately high and adverse human health or environmental effects from transportation programs, policies, and investments.

18.h Coordinate with the Olympic Region Clean Air Agency, the Washington State Department of Ecology, the U.S. Environmental Protection Agency, the Federal Highway Administration, and the Federal Transit Administration to ensure federal Clean Air Act transportation requirements are met.

18.i Support efforts to improve motor vehicle maintenance to reduce air and water pollution.

18.j Strive to balance appropriate levels of environmental protection with the costs of achieving it, recognizing that environmental and human health impacts of the transportation system cannot be completely eliminated.

Why Environmental and Human Health is Important:

The Thurston region has a legal responsibility to ensure that transportation investments don’t reverse the good results achieved in air quality over the last 10 years. It’s also important to ensure the negative impacts of the transportation system on the social and built environment don’t outweigh its benefits. Transportation investments should add to – not detract from – quality of life in neighborhoods, rural communities, and city centers.

Challenges for Environmental and Human Health:

- The Thurston region – like most of the U.S. – is dependent on fossil-fuel technologies for virtually all of its transportation. The way the region developed created many mobility needs. These fossil fuels, and the many square miles of impervious surface required to meet daily travel needs, have long impacted air and water quality, wildlife habitat, and community livability.
• Health experts are blaming the nation’s increasing obesity and associated health problems in part on auto-oriented lifestyles and associated community sprawl.

Public Comment and Input:
People feel strongly about the importance of healthy environments, both natural and social:

“We’ve got to make people a higher priority than cars.”

“The problem is our future dependence on cars, and the impact of that on our air quality. If we value clean air we’re going to have to ask whether we can really continue to rely on the gas-guzzling car. Can we, do we want to, wean ourselves from the independence and luxury of our cars?”

“Government needs to decide whether a project will pay for itself, of course. But more important to me is whether a project will improve the environment. We need to consider the quality of life, and try to preserve it.”

At the same time, there’s a growing call for common-sense approaches to addressing problems.

“Environmental protection pushes my buttons. We’ve lost the balance somewhere. Save the fish, but put 3,000 people out of their homes. It’s out of whack. I know the pendulum is way over to one side right now – 10 or 15 years ago it was way over to the other side. But with all these environmental rules they have now, there has to be a common sense approach, too. We need more balance, somehow.”

“You can’t do ‘one-size-fits-all’ environmental regulation. It’s going to cost society too much if we keep going this way. The cost of housing, the cost of transportation, the cost of everything will go through the roof.”

Measures to Support Environmental and Human Health Objectives:

• Pursue “clean fuel” technology like biodiesel in the Thurston region. Take advantage of the size of government vehicle fleets (Intercity Transit, school districts, government agencies) to create the initial market demand. If necessary, consider some kind of market incentive to encourage suppliers to make biodiesel available and promote it widely to Thurston County consumers.

• Evaluate fish-bearing streams to better target resources to the highest priority culvert retrofits.

• Explore participatory processes inherent in Context Sensitive Design as a way to include citizens and businesses in evaluating specific transportation problems, determining needs, and designing solutions.

• Pursue legislation mandating statewide motor vehicle emissions and inspection programs.

• Actively support policies and implementation measures in the “Transportation and Land Use Consistency” element of this Plan to support the objectives of this section.

Did You Know...?
Biodiesel is an organic, non-toxic alternative to petroleum diesel. It has similar properties, and can be blended with petroleum diesel. A blend of 80% petroleum diesel and 20% biodiesel (called a B20 blend) reduces airborne particulate matter by about 10%. It also produces significant reductions in carbon monoxide and other greenhouse gases. This low-emissions B20 alternative only reduces vehicle mileage by 2% and entails minimal vehicle modifications.

Source: Environmental Protection Agency
19. Performance Measures

Goal: Develop performance measures that are efficient to administer, effective in assessing performance, and meaningful to the public.

Policies:

19.a Use transportation performance measures to evaluate, monitor, and respond to the performance of regional policies and investments.

19.b Use transportation performance measures that reflect priority regional objectives, such as consistency of transportation and land use decisions, improved mobility and access, adequate maintenance and repair of the existing system, environmental protection, and safety.

19.c Develop performance measures that reflect the contribution of all modes of travel.

Why Transportation Performance Measures Are Important:

Performance measures can be useful tools in evaluating how well policies and investments support key transportation objectives. These measures provide a basis for understanding current situations, assessing decisions and outcomes, and perhaps making future course corrections. This can be helpful in prioritizing issues, allocating resources, and marking progress on complex issues. Performance measures can also be powerful tools for explaining issues, strategies, and outcomes to constituents and other interests.

Challenges for Transportation Performance Measures:

- A serious downfall of many programs is the urge to develop too many performance measures. Unless key objectives are narrowed and meaningful measures developed for those select priorities, collecting data, monitoring, and reporting on performance measures can be time consuming and expensive. It is difficult, but essential, to prioritize among the list of objectives and select only a few performance measures.

- Another challenge is posed by the limited availability of reliable data that can be updated periodically. Again, measures that rely on creation of new data are likely to be costly or difficult to maintain over time.

- Regional performance measures may be different from many measures implemented at the local, tribal, or state levels because missions and priorities differ.

- Without a commitment to monitor, report on, and evaluate performance measures in a meaningful way, the public and other stakeholders will grow disillusioned. A thoughtful process is needed to establish measures that identify appropriate objectives and avoid over-committing resources.
Public Comment and Input:

The specific question of performance measures has not been posed to community discussion groups through any of TRPC’s outreach efforts. However, some input was offered on the only measure used in previous regional plans for evaluating system performance – a congestion measure based on designed roadway capacity compared to actual or forecasted traffic volume. Participants indicated congestion is not an adequate measure to judge total transportation system performance.

“We used to think we could build our way out of over-crowding on the highway. Now, we’re beginning to wonder if we really can, or if widening roads will just attract more cars.”

“Congestion, while it’s annoying, isn’t very high on my priority problem list.”

Measures to Support Transportation Performance Measures:

- Identify three or four performance measures to augment the region’s current level of service (LOS) standard that is based on volume-to-capacity ratio. Identify the specific goals and the intended outcomes of policies and/or investment decisions that will be evaluated using these measures. Ensure that this information is clear and easy to understand.

- Explore whether a multimodal level of service standard is a workable and desirable measure for local or regional system evaluation.

- Develop an appropriate reporting format, evaluation schedule, and process for monitoring performance measures over time.

- Develop a communication strategy to report findings.

Did You Know...?

One measure of how well transportation and land use are working together is reflected in the “drive-alone rate.” Often based on the commute trip, the drive-alone rate indicates whether a larger or smaller share of commuters are traveling by alternate modes. In 1990, 79% of people in the region were commuting by driving alone to work. By 2000, the share of commuters driving alone dropped to 77%. While this is a reduction of only 2% of commuters, it represents a reversal of trends over the last few decades in which increasing percentages of people were making the drive-alone commute. Even lower drive-alone rates are found in the Lacey-Olympia-Tumwater urban area (74%). However, the lowest rates in the Thurston region are found on the Chehalis and Nisqually Indian Reservations, which have a combined drive-alone rate of 64%.

Source: 1990 and 2000 Census
20. Transportation Funding

Goal: Ensure that transportation revenues provide maximum public benefit and support adopted land use strategies.

Policies:

20.a Provide timely and comprehensive public information about transportation funding issues and opportunities to better enable citizens to participate on complex funding decisions.

20.b Prioritize the maintenance and preservation of the existing transportation system to minimize life-cycle costs.

20.c Consider costs and benefits in the allocation of transportation funds to ensure best long-term investment decisions.

20.d Make strategic transportation investments that reinforce well-planned growth and redevelopment decisions.

20.e Ensure that transportation investments are equitable to all segments of the community – in terms of costs such as relocations, adverse health impacts, and land use disruptions – and in terms of benefits derived from the system, such as levels of service or travel choices.

20.f Support efforts to improve the availability, predictability, and flexibility of transportation revenues.

20.g Use transportation funding policies and investments to make development decisions predictable, fair, and cost effective.

Why Transportation Funding Is Important:

The facilities that are built, the programs and services that are implemented, and the education and outreach that is conducted, all rely on sufficient funding.

Challenges for Transportation Funding:

- No single funding source is available for governments to build, maintain, and operate the region’s transportation system. Instead, funding is pieced together from a variety of revenues. This challenges orderly and thoughtful prioritization and implementation strategies.

- Voters in Washington State and Thurston County alike have been divided on the subject of transportation funding in recent years, often along rural/urban lines. Recent state gas tax and local sales tax increases do not offset earlier losses of revenue sources or inflationary effects on fixed revenues. In some cases, delaying program investments – as in pavement preservation programs – results in higher life-cycle costs later.

- Funding issues are further compounded by the lack of true market mechanisms to manage the demand for travel. As more than one person commented through community discussion groups, individuals have an unlimited appetite or “demand” for transportation facilities, the “supply” of which falls on the public sector. Unlike utilities or any other goods, few pricing structures are available for effectively balancing supply and demand, and those that exist are difficult to implement.
Public Comment and Input:

When questions about transportation funding are posed, the public often responds “Spend money wisely.”

“Part of ‘finding more money’ is not necessarily to come up with new sources, but to use the ones we already have more efficiently and effectively.”

There’s a growing awareness of the challenge facing government in meeting demands for transportation facilities without effective pricing or market tools.

“I don’t think we have a transportation problem – I think we have a pricing problem.”

“There are two different opinions that the general public has about transportation. In terms of willingness to pay additional taxes or fees for services, transportation is a low priority. In terms of wanting service at their door every 10 minutes, transportation is a high priority. There is a difference between what people are willing to pay for, and what their expectations are.”

“What we would like to have is usually a whole lot more than what we’re willing to buy if we have to pay for it. And most plans I’ve seen don’t take that into consideration.”

Impact fees and other developer contributions surfaced as a frequent topic.

“It’s unfortunate that impact fees are so narrowly defined in what they can be used for because I think that there are other alternatives to accommodating new growth than just widening roads.”

“Impact fees should be charged in the outlying areas, where people really depend on their cars. People who live further out from the city are creating a larger burden on government than those who live in the cities, so they should pay a larger share of the costs.”

“A big part of the finance equation that’s missing are facilities built by private development. There’s a lack of understanding – or misunderstanding – about this share of the costs that are paid by development. This is above and beyond what we pay in fees. Average cost for a typical lot I developed in Lacey is $14,000 for transportation infrastructure alone, and I give this infrastructure to the city when it’s complete. We are out there constructing a huge amount of public infrastructure that most people are not aware of.”

Did You Know...?

Taking care of the existing system, making it safer and more efficient, accounts for about 75% of transportation costs local agencies incur. The need to expand the system represents about 25% of costs.

Source: TRPC, Guide to Financing the Regional Transportation Plan

Measures to Support Transportation Funding Objectives:

- Consider ways to refine development fee structures for transportation to better support local and regional investment goals, improve predictability and equity for developers, and generate appropriate contributions attributed to all development impacts.

- Improve funding and programming predictability at the local and regional levels. Increase the amount of revenue over which agencies have decision-making authority, either through the provision and implementation of workable local revenue options, or through an increase in state revenues distributed directly to local or regional agencies for programming.

- Explore issues and options regarding the funding of infrastructure and services in urban growth areas.

- Monitor legislative consideration of local revenue options like city street utility, local option gas tax, motor vehicle license fee and other local revenues for priority transportation needs.
4. Alternatives Analysis

Proximity generates its own demand for travel
Alternatives Analysis

TRPC developed recommendations for the Regional Transportation Plan before analyzing 2025 forecast conditions. Fundamental to that work was development of the regional travel demand model, using EMME/2 software as the platform.

Also integral was development of the 2025 population and employment forecasts that served as a basis for the analysis. Readers interested in the assumptions and methodology used in those forecasts should refer to TRPC’s “2025 Population and Employment Forecast for Thurston County – Final Report” (www.trpc.org).

The focus of this chapter is the long-range regional transportation forecast analysis.

Overview

The 2025 RTP was developed using the regional road network as it existed in 2000, before the February 2001 earthquake. This baseline provided a starting point for evaluating proposed projects.

Three alternatives were considered in development of the 2025 RTP. The first and third of these represent “bookends” in the range of possibilities where the recommendation would be developed. The second – the Plan recommendation – lies between, adding some system capacity while meeting financial and air quality conformity constraints.

The alternatives are based on the regionally adopted land use forecast, projecting the distribution of population and employment in 2025 based on currently adopted land use requirements. The region’s adopted LOS standards were used in each alternative.

The alternatives also retained the regional policy limiting maximum street width to five lanes for local roads. The five lane standard includes two through lanes in each direction, plus an auxiliary turn lane, with additional channelization at intersections as warranted.

The RTP continues the concept of “strategy corridors,” for use where road widening is not a preferred option in addressing congestion.

These alternatives were modeled using EMME/2. This transportation modeling software allows analysis of factors such as time of day, mode split and travel time in addition to traditionally modeled p.m. peak travel conditions.
4. Alternatives Analysis

The “No New Capacity Revenue” alternative – or “no build” alternative – depicts LOS conditions in 2025 if the only capacity projects completed between now and then were those already fully funded.

The “Unlimited Capacity Revenue” alternative – or “full build” alternative – depicts LOS conditions in 2025 if the region tried to build its way to meeting LOS with road construction.

The 2025 recommendation – or recommended alternative – adds system capacity beginning with funding secured projects and projects from the locally adopted six-year transportation improvement plans. A few additional strategic projects were then included to address key mobility issues. This recommendation meets air quality conformity and financial constraints.

In addition to the region’s adopted land use forecast, three land use options were examined in the recommended alternative. Each option moved approximately 5,400 dwelling units (about 9 percent of the housing that will be built between 2000 and 2025) without defining the mechanism for accomplishing the shift.

The options were evaluated using LOS standards and vehicle miles traveled (VMT). These smaller shifts in land use – only tested on the recommended alternative – did not substantially change traffic impacts to the regional network.

Additionally, mode split, time-of-day, and corridor travel time were investigated as appropriate performance indicators. These new measures, tested on the recommended alternative, show promise for use in future LOS standards, but require additional analysis.

Based on results of this analysis, recommendations regarding investments and follow-up measures were developed for this Plan.

Book-end Alternatives

Many variables can be evaluated in a long-range travel forecast. However, manipulating too many at one time makes it difficult to assess the effect of any one change. The purpose of the book-end scenarios was to control the number of variables, better isolating “cause and effect.”

Of the various forecast elements that could be evaluated during this initial analysis, five were held as constants – land use, transit, roadway level of service, maximum street width, and strategy corridors.

Land Use

The two book-end alternatives reflected regionally-adopted population and employment forecasts based on locally-adopted
4. Alternatives Analysis

land use plans. Those plans have as their central premise the philosophy of compact, mixed-use urban and suburban development with low-density rural development. The 2025 region-wide forecast was adopted in 1999. At that time, TRPC followed a collaborative and documented process to distribute the region-wide totals to the jurisdiction level and the traffic analysis zone level for use in the regional travel demand model.

Transit
2025 transit service in the two book-end alternatives reflected 2000 investment levels and types of service offered. It also reflected the 2002 service area boundary. For purposes of this initial analysis, no increase in service levels was made for the forecast year.

Roadway Level of Service
The two book-end alternatives tested the region’s adopted roadway level of service standards, or LOS. The 2020 Regional Transportation Plan adopted a LOS standard based on congestion levels averaged over the worst peak period – looking at the average volume during the two-hour evening commute on a roadway segment and comparing it to the capacity that segment was designed to carry. As the volume gets closer to the maximum capacity, the LOS of that roadway degrades. The region’s adopted LOS standards are:

- LOS E or better in core areas and high density urban corridors;
- LOS D or better elsewhere inside Urban Growth Areas; and
- LOS C or better outside Urban Growth Areas.

Map 4-1 illustrates where those standards are applied.

Maximum Street Width
In addition to level of service, the 2020 RTP addressed two other roadway factors held constant in the book-end alternatives. The first is a maximum width of five lanes for local streets and roads. Unlike the 2010 RTP – which recommended widening some local streets to 6 or 7 lanes – the 2020 RTP limited the width of local streets to maintain an appropriate scale for this community. The 2020 RTP determined that agencies, when trying to address congestion problems with road widening, should not exceed two through lanes in each direction and an auxiliary turn lane. The recommendation recognized that additional channelization might be warranted at intersections.
4. Alternatives Analysis

Strategy Corridors

First used by the 2020 RTP, “strategy corridors” are places where road widening is not a preferred option to address congestion problems. This may be because the street or road is already at the maximum five-lane width, or that adjacent land uses are either fully built out or are environmentally sensitive. In strategy corridors LOS may exceed adopted standards, suggesting instead that a different approach is needed for maintaining access in these areas. Alternatives to motor vehicle congestion may be considered when defining LOS in strategy corridors. The RTP supports local agencies in trying innovative approaches to address the unique needs of individual strategy corridors when the overall objective and outcome are improved safety and access. Strategy corridors are incorporated into the book-end alternatives described on Map 4-1.

With these five elements held as forecast constants, two book-end alternatives were created to test the impacts of 2025 population and employment on the transportation system – the “no new capacity revenue” alternative and the “unlimited capacity revenue” alternative.

2025 “No New Capacity Revenue” Alternative

The “No New Capacity Revenue” alternative – or “no build” alternative – depicted LOS conditions in 2025 if the only capacity projects completed between now and then were those already fully funded. It assumed no additional revenue for road capacity projects other than what was already secured, and did not include planned projects identified in Capital Facilities Plans or Transportation Improvement Programs. It did not include projects for which local agencies are currently collecting development fees unless already fully funded. It did not include those projects which received a grant for design or right-of-way, unless funding was also secured for construction.
2025 “Unlimited Capacity Revenue” Alternative

The “Unlimited Capacity Revenue” alternative – or “full build” alternative – depicted LOS conditions in 2025 as if the only objective was to overcome congestion problems through road widening. This alternative included all the projects identified in the “No New Capacity Revenue” alternative, plus unfunded projects as necessary to try to rectify outstanding LOS problems. This alternative relied on adopted six-year Transportation Improvement Programs (TIPs) for locally-identified projects that addressed congestion problems, the Highway System Plan for WSDOT planned projects, and the 2020 RTP for longer-range project proposals. Even with all these plans as resources, this alternative required additional project concepts not identified elsewhere.

Note that neither of these book-end alternatives was intended as a realistic alternative.

Resulting Issues to Explore Further

In evaluating and interpreting the forecast output from the book-end alternatives, two primary areas emerged that merited further evaluation.

Land Use
As noted earlier, the two book-end forecasts were based on adopted land use plans and development trends. But what if the region was more successful in attracting the kind of high density residential development called for in these plans to the city centers of Lacey, Olympia, Tumwater, and Yelm? What if the region was less successful in meeting its urban land use goals and the rate of growth in unincorporated areas accelerated? How would the regional transportation system be impacted?

LOS Standards
The corridor problems evident in the book-end alternatives – despite virtually unlimited capacity investments in one – suggested there may be limitations to the current LOS standard as it applies to regional mobility. Focusing on congestion “spots” does not accurately reflect the travel experience in these corridors, nor does it provide any measure of other system performance goals, like mode split or miles traveled.
4. Alternatives Analysis

With these two primary areas of interest identified – land use and LOS standards – the analysis then turned to exploring a recommended alternative.

Recommended Alternative Options

In developing the recommended alternative, some base assumptions were revised to more accurately reflect likely future conditions.

Transit Service

While the book-end alternatives held future transit service at 2000 levels, urban transit service is expected to increase over time. For the recommended alternative, transit service was increased in the urban area in accordance with Intercity Transit’s adopted long-range plan, contained within its 2002 revised service area. This strategy concentrates increased service along primary urban corridors connecting activity centers within and among Lacey, Olympia, and Tumwater, with service connections to Yelm. It includes express bus service to destinations in Pierce County.

Parking Costs

Parking costs were applied to areas in downtown Olympia commensurate with rates recently adopted by the city.

Capacity Projects

To create a realistic base street and road network for analysis of the alternative scenarios, regionally significant capacity projects identified in locally-adopted six-year TIPs were incorporated into the network, regardless of funding status. Local agencies are already seeking grant funding and collecting development fees where appropriate for these projects. Local operational analysis has already been conducted and project need verified. These represent the least hypothetical of projects for the region’s future.

Update of the base network included completion of the Chehalis-Western Trail “Bridging the Gap” project, a non-motorized facility connecting key urban residential and employment centers.

With this update of base network assumptions, scenarios were developed to explore the land use and LOS issues identified in the book-end alternatives, entailing three different land use options. Evaluation of these additional options relied on alternative system performance measures to augment the adopted LOS congestion standard.
Land Use Options for 2025 RTP
Analysis

The region’s adopted 2025 population and employment forecast reflects an agreed-upon set of assumptions based on local land use plans, development trends, and policies. This forecast is used in the regional travel demand model to develop 2025 baseline conditions for analysis.

What if land use happens differently than originally forecasted? What if distribution assumptions were different? What impacts would those assumptions have on future travel conditions?

To answer these questions and support a more thorough policy evaluation process, three land use options were developed for analysis with the regional travel demand model: city center infill; accelerated rural growth; and urban growth area shift. The options share some important characteristics.

- All three options reflected a shift in the distribution of future residential growth – there was no net gain or loss, region-wide, in the number of dwelling units between the original adopted forecast and any of these options. No change was made to forecasted employment distributions.
- Each option shifted about 9 percent of the total forecasted growth in dwelling units, between 5,300 units and 5,500 units per scenario. Total forecasted growth in residential dwelling units between 2000 and 2025 is 59,335 units.
- None of these options prescribed the means by which changes would occur. Interest in implementation of any of these would require more detailed assessment of the zoning changes, economic incentives, investment strategies, and other tools necessary to encourage a change from the current course.

The three land use options developed for this analysis are:

Option #1 – City Center Infill

This scenario assumed more residential infill and redevelopment would occur in the city centers of Lacey, Olympia, Tumwater, and Yelm than is currently envisioned in the adopted forecast. As a result, less residential development would occur in rural areas outside the urban growth areas (UGA). There was no change to UGAs.
4. Alternatives Analysis

Thirty percent of forecasted residential growth located outside of established UGAs was moved to urban receiver zones, resulting in a shift of 5,460 dwelling units originally forecasted for rural areas.

Those residential units were relocated into narrowly defined city centers of Lacey, Olympia, Tumwater, and Yelm – areas within an approximate half mile radius in the four city centers. Housing units were located into residential zones in these city centers, regardless of existing or projected capacity. Figure 4-1 describes the traffic analysis zones that were considered city center zones.

The growth originally forecasted for Lacey, Olympia, Tumwater, and Yelm was used to establish growth shares for each jurisdiction (Table 4-1). These growth shares determined how much of the rural residential shift went into each jurisdiction’s city center. All residential units transferred from the rural area were distributed into city center zones as multi-family units with an average household size of two people.

Table 4-1
Forecast Distribution for City Center Infill

<table>
<thead>
<tr>
<th>City</th>
<th>Total Growth in Dwelling Units 2000-2025 Original Forecast</th>
<th>Percent of Total Growth Forecasted for 4 Cities*</th>
<th>Number of Units Shifted into Designated City Center Zones</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lacey</td>
<td>7,027 units</td>
<td>32%</td>
<td>1,771</td>
</tr>
<tr>
<td>Olympia</td>
<td>8,967 units</td>
<td>41%</td>
<td>2,260</td>
</tr>
<tr>
<td>Tumwater</td>
<td>3,498 units</td>
<td>16%</td>
<td>882</td>
</tr>
<tr>
<td>Yelm</td>
<td>2,174 units</td>
<td>10%</td>
<td>547</td>
</tr>
<tr>
<td>Total</td>
<td>21,666 units</td>
<td>100%</td>
<td>5,460</td>
</tr>
</tbody>
</table>

* Numbers do not add to 100% due to rounding.
4. Alternatives Analysis

Option #2 – Accelerated Rural Growth

In this scenario, rural residential development would occur faster than what is currently envisioned in the adopted land use forecast. As a result, less residential development would occur throughout the cities of Lacey, Olympia, Tumwater, and Yelm. No change was made to growth forecasted in the UGAs.

Twenty-five percent of residential growth forecasted for the city limits of Lacey, Olympia, Tumwater, and Yelm was relocated to unincorporated areas outside any UGA. This resulted in a shift of about 5,500 dwelling units from urban to rural areas.

All residential growth transferred from urban areas was distributed to rural areas based on the proportional share of rural growth each traffic analysis zone was originally forecasted to receive. Transfers of residential growth were made consistent with current rural zoning densities. Single family homes were transferred as single family homes. Multi-family homes were transferred as manufactured homes.

Option #3 – Urban Growth Area Shift

This scenario assumes that residential development within city and urban growth areas would occur in a more concentrated fashion than is currently envisioned in the adopted population forecast. Development would occur at the higher end of allowable zoned densities within city limits and in the close-in, “short-term” urban growth areas contiguous to city limits, while preserving residential growth capacity at the fringe of the existing growth boundaries. The close-in urban growth areas are where utilities and services like transportation can be extended most cost-effectively within the next 20 years. No change was made to rural zones.

Seventy-five percent of future residential growth forecasted for the long-term growth areas was shifted to the short-term growth areas and city limits. Assumptions about long-term and short-term growth areas for this option were based on the size of the jurisdiction. For Lacey, Olympia, and Tumwater, the long-term growth area (where housing units were shifted from) was more than ½ mile from existing city limits, but within the UGAs. For Rainier, Tenino, and Yelm,
4. Alternatives Analysis

the long-term growth area was more than ¼ mile from existing city limits but within the UGA. All shifts within a city and its UGA stayed within that jurisdiction. Residential units were allocated proportionately to any areas within that jurisdiction that allowed residential uses.

These three land use options plus the original land use forecast were evaluated for their impacts on the regional transportation network using the 2025 travel demand model.

Analysis Tools

In addition to evaluating the effects of different land use patterns on the transportation system, analysis of the book-end alternatives suggested the need to look at alternative system performance measures as well as roadway congestion. Those alternative measures included mode split, time of day modeling, vehicle miles traveled, and corridor travel time.

Mode Split

“Mode split” refers to the measure of how much travel occurs by select forms of transportation. For purposes of this RTP, mode split focused on five forms of transportation: Driving alone, driving with one or more people, riding transit, walking, and biking.

As a measure, mode split is dependent on two key factors. First is choice. What travel choices do people have? If bus service is not accessible, or sidewalks and bike lanes are not present, people cannot choose those modes of transport and the model will not assign forecasted trips to those modes.

The second key factor is land use. How the community is built – the proximity of uses to each other – plays a major role in shaping the travel choices people make. For example, in a city of short distances and mixed uses, it is likely that walk or transit trips will be attractive choices for many people for many trip purposes. The other extreme – rural residential uses located several miles from retail or employment uses – will typically rely on driving since walking or transit are not viable alternatives.

One other relevant aspect of mode split concerns “trip type.” Trip type refers to the reason people travel. Typically, transportation planning concerns itself with the commute trip – the traditional home-to-work-and-back-home trip. This is a narrowly defined trip type in planning, and represents only
about one fifth of all trips in the region. It does not account for all the other reasons people need to travel – to shop, recreate, attend school, or run errands.

The 2025 forecast analysis looked at mode split for the traditional commute trip type. It also viewed mode split for all trip types to evaluate how similar or dissimilar the commute trip is from all trips in general when it comes to the ways in which people travel. This could have significance for future policy and investment decisions.

Time of Day Modeling

“Time of day” modeling evaluates conditions at various times during the day. Traditionally, transportation planning focuses on the “p.m. peak period,” or the evening commute. This is often understood to be the time of day when the transportation system is under the greatest stress.

For the 2025 alternatives analysis, two other time periods were evaluated, morning and mid-day peak periods. The purpose of this analysis was to identify whether the greatest stress points in the evening were also the greatest stress points at other times of the day. This could be useful in prioritizing problem areas or in evaluating potential solutions to problem areas. It is also useful in understanding how efficiently the transportation network is functioning, where and when it is over- and under-utilized.

Vehicle Miles Traveled

Vehicle miles traveled, or VMT, is an aggregate sum of how many miles all the motorized vehicles travel in a particular area during a particular time period. For example, VMT may be quantified region-wide for an all-day period and for the Lacey-Olympia-Tumwater metropolitan area for the p.m. peak period. VMT may also be estimated on a per capita basis.

VMT is important in evaluating how well transportation investments and land use policies work together. This interests transportation planners because of per capita trends over the last several decades. In the Thurston region, as well as the state and national levels, the per capita VMT has risen steadily. More people are driving, and each person, on average, drives more miles.
4. Alternatives Analysis

This chapter does not delve into the land use, economic, or policy reasons for this increase, nor the health or fiscal implications. However, it is an area of concern that the Plan attempts to address.

VMT – especially per capita VMT – is an indicator of peoples’ need to drive. Reduction in per capita VMT may be due to shifts to other modes of travel, such as transit, biking or walking. Or it may be due to land use policies that encourage a mix of uses in close proximity, resulting in the same proportion of people driving, but driving shorter distances. Regardless of the reason, downward per capita trends are more desirable.

Corridor Travel Time

Corridor travel time refers to the model-estimated time it takes to travel between one point and another, in this case, along specific corridors. Differences in modeled, average travel time are used to evaluate roadway system performance in key regional corridors under various conditions. It is a relative measure based on network characteristics like posted speed, number of lanes, delays at traffic signals and interchanges, and the vehicle demand generated by land use. As a tool, it accounts for the dynamic relationship between transportation and land use better than a single spot measure of congestion.

In its application as a regional forecast analysis tool, 10 regional corridors were identified for evaluation. These essential east-west and north-south streets, roads, and highways function as corridors regardless of jurisdiction. Map 4-2 illustrates these corridors.

Modeled travel time is not a surrogate for real-world travel time. People may tend to look at modeled travel times and compare those to their personal experience. However, this is not an appropriate use of corridor travel time evaluation for several reasons:

- The modeled travel time on urban corridors with many signals will appear faster than it really is.
- The model represents optimum regional condition – no incidents anywhere on the regional system, perfect driving conditions, and all drivers behaving rationally with complete information about routes that will optimize their travel time.
4. Alternatives Analysis

- Modeled travel speed does not account for other real-world factors like individual driving behavior.

Travel time analysis cannot be equated directly to established level of service standards or indicate what projects need to be built any more directly than traditional LOS analysis does.

Recognizing these limitations, this initial use of corridor travel time evaluation demonstrated value for several different purposes:

- **Compare relative changes among the land use scenarios.** For example, a shift in land use one way tended to show longer travel times on the north-south corridors than a shift the other way.

- **Understand the impacts that directional splits (morning versus evening flows) have on travel time.** This again relates directly back to land use. The more segregated the land uses, the more pronounced the directional flows and the impacts on travel time.

- **Provide some magnitude to the intuitive understanding that travel times will be longer in the future than today.** It is unrealistic to expect that the region will grow without having some delay impact on travel time. Travel time analysis is useful in understanding whether that increase is in the magnitude of, for example, 10 percent more than today’s modeled travel times or 130 percent more.

- **Evaluate impacts of transportation investments.** With some additional refinements, corridor analysis can be used to compare the relative benefits and impacts of major transportation investments. It may even be useful to look at the secondary impacts on other corridors. For example, what are the travel time effects on Martin Way when capacity is added to a corridor like Interstate 5? Because these are all essential regional corridors, capacity or land use changes on one corridor are likely to have implications for travel conditions on another.

During technical analysis of the forecast results, each of these evaluation factors were used to compare the impacts of the three land use options with those of the adopted land use forecast.

Effect of Land Use Options on Select Travel Characteristics

As noted earlier, the 2025 mode split analysis marked the first time that the regional transportation plan evaluated all trip types, not just
4. Alternatives Analysis

Figure 4-2
2025 Distribution of Trips by Trip Types
Adopted Land Use Forecast

Source: TRPC 2025 Travel Demand Model

Figure 4-3
2025 Region-Wide Mode Split, All Trip Types
Adopted Land Use Forecast

the commute trip. Figure 4-2 underscores the importance of this broader evaluation. It shows the distribution of “trips by trip type” for the Thurston region resulting from the adopted land use forecast. Transportation planners refer to “trips by trip type” as the share of all trips made for commute purposes compared to those made for shopping, other errands, or school. Note that true commute trips represent only about 19 percent of all the trips on the network. It is important to look at work trips, but not to the exclusion of all other trip types. How communities are built influences the way all trips are made, not just commute trips.

The importance of this is better understood by looking at the next two charts, when mode split is factored into the analysis.

Mode Split

Figure 4-3 illustrates the share of all trips that would be made by driving alone versus driving with one or more people (drive plus), taking transit, biking or walking. When all trip purposes are considered, just over half of all trips will be made by driving alone. The other half will be made by
other modes of transportation. This mode split distribution is based on the adopted land use forecasts. When the mode split focus is on just the traditional commute trip – home to work and back home again – the distribution is very different. As Figure 4-4 illustrates, when only commute trips are evaluated, the share of trips made by driving alone soars to 83 percent. Remember that this represents only about 20 percent of all trips on the network.

A Note About Trips

Any discussion of trip type analysis in a transportation plan needs some explanation of how “trip” is defined in this process because it is not the same way the term is generally understood.

When people think of a trip, it may include one or more stops between the origin and the ultimate destination. For example, most people would consider theirs’ the traditional “home to work” commute trip, even if they drop one kid off at school, leave the baby at daycare, deposit the dry cleaning, and then stop for a latte before arriving at work. However, when the term “trip” is used in a transportation plan it refers to something very specific, one origin and one destination.
4. Alternatives Analysis

To a transportation planner, the example above is actually a series of five trips that are linked together like a chain between the first origin (home) and the ultimate destination (work). This discrepancy between the technical concept of trip and the common understanding further underscores the importance of not relying solely on the commute trip for analysis purposes. Ideally, the 2025 RTP would incorporate the more typical “trip-chaining” behavior, but that type of modeling capability is still many years away. One way to more accurately reflect real-world travel patterns is to consider all trip types during analysis.

This transportation planning definition of trip has been characterized as overstating the share of trips made by walking, painting an overly optimistic mode split picture. The argument is that once the car is parked, it doesn’t matter whether a person goes to one store or four, it should only be considered one trip.

But depending on how the community is built, that hypothetical person may or may not walk to additional destinations after parking the first time. With a safe and conducive environment for walking, those additional trips can be made without having to move the car. However, if safe and convenient sidewalks are not available, or the
stores are separated by a large parking lot or a busy arterial, then a person has no reasonable choice but to drive to the next destination. That is part of the reason why the share of trips made by walking is so high in compact downtown areas, and is so low in suburban areas with auto-oriented development patterns. People often find it more convenient to walk rather than drive from one destination to another in a traditional city center. In this sense, walk trips represent avoided driving trips, resulting in incremental capacity increases for drivers. This is why it is important to count “walk trips” using the transportation planning definition.

The impact of land use patterns on various modes of travel is best illustrated in Figure 4-5 on page 4-16. It shows the impacts created by each of the three land use options on person-trips by mode compared to the adopted region-wide land use forecast. The numbers were generated by subtracting the trips by mode in each option from those in the adopted forecast, and then graphing the change. The value of this chart is not in the actual numbers of change, but rather in the magnitude and trends resulting from each land use option.

The graphic illustrates the differences among the land use options:

- City Center Infill – Note the effect of increasing urban residential units where employment and services are concentrated, especially on the drive alone and walk trips. Shorter distances between housing, jobs, and services reduces demand for drive alone trips and increases opportunities for alternatives, especially walk trips. Trip distances are short enough, in fact, that walking likely competes effectively against transit and bike trips in the narrowly defined city centers.

- Accelerated Rural Growth – Note the roughly equal increase in drive alone and carpool trips. Longer trip distances make carpooling – driving with other people – as attractive a travel mode as driving alone. Walk trips significantly decrease in this scenario, which is the single most impacted mode in any of the three scenarios.

- UGA Shift – This is the land use option most similar to the adopted forecast, resulting in a moderate increase in all trips, most notably drive alone, drive plus, and walk. Since all modes show an increase, results of this option best demonstrate the effect land use proximity has on travel demand. When origins and destinations are closer, discretionary trips increase. If a person has to drive five
4. Alternatives Analysis

miles to the hardware store, the little widget that just came off the birdfeeder is not likely to be fixed until the weekend trip to the store. If that person lives five minutes from the hardware store, a quick trip will likely result. Proximity generates its own demand for travel.

More extensive analysis was conducted on the three land use options by geographic area and trip purpose. Overall, this validated the base assumptions behind the RTP and land use plans that the attractiveness of various travel modes is directly linked to the way those communities are built.

Focus on City Centers

There is a risk in comparing the resulting mode splits from each of the three land use options with those from the adopted land use forecast. Virtually no difference is discernible in region-wide mode split among the three land use options and adopted forecast. Region-wide figures are strongly influenced by the size of the region and the land use pattern that is already in place. The “shifts” described in the land use options represented only 9 percent of future growth, which is only about 3 percent of all housing units forecasted for 2025. Region-wide, the shifts were simply too small to register against the adopted forecast. However, mode split results are significant when analysis focuses on the city centers defined for the City Center Infill option.

Figure 4-6 shows resulting mode split within the city centers based on the modeled City Center Infill option. The graphic from Figure 4-3 is inset to compare mode split for the entire region. While the

Figure 4-6
2025 Mode Split Results for City Centers – City Center Infill Option

Source: TRPC 2025 Travel Demand Model
differences were not dramatic, the concentration of residential uses in this option reduced the share of trips made by driving alone and increased the share made by walking relative to the region-wide mode split for this scenario.

As noted earlier, the city centers were defined as parts of Lacey, Olympia, Tumwater, and Yelm within a half-mile radius of the densest employment and retail nodes. The city centers defined for this option actually represent much smaller areas than the official downtowns of these four cities. The purpose of creating these city centers was to assess what effect this higher concentration of residential activity around the primary employment and retail nodes would have on travel. The concept is consistent with adopted land use plans, although the City Center Infill option assumed greater success at achieving these downtown residential uses than is currently experienced or forecasted.

Since so much of the region’s employment is concentrated in these four city centers, it was worth looking at the mode split results for commute trip purposes just within the city centers and again comparing that to mode split results for the whole region.

Figure 4-7 demonstrates the pronounced differences between the city center and region-wide average. Drive alone commute trips decreased significantly (from 83 percent region-wide to 69 percent in the city centers) and both walk and transit work trips increased in the city center evaluation.
4. Alternatives Analysis

Vehicle Miles Traveled

Part of the forecast evaluation looked at how the different land use options influenced vehicle miles of travel, or VMT. VMT is an important tool for evaluating how well land use and transportation are working together. More integrated land uses result in slower growth in VMT. The trips people have to make to meet their daily needs are shorter, so the miles they have to travel are reduced or they may use other means than driving alone.

As shown in Figure 4-8, when the three land use options were compared to the adopted forecast, almost no difference resulted in region-wide VMT totals. The shifts in land use were not enough to offset the travel patterns already in place. Accelerated rural growth VMT increased and city center infill VMT decreased, but these slight changes were minor compared to the adopted forecast.

As with the mode split analysis, the differences in VMT were more discernible when looking at changes within the city centers themselves. Figure 4-9 illustrates the change in p.m. peak period VMT among the 2000 base year, the adopted 2025 land use forecast and each land use option for the city centers of Lacey, Olympia, Tumwater, and Yelm. Again, while differences are discernible, the magnitude of background traffic mutes the changes attributable to each scenario.
4. Alternatives

Analysis

Corridor Travel Time

Travel times were evaluated for 10 essential regional corridors, looking at morning and evening commute periods by directional flow. A few key findings emerged from this analysis:

- Results of the three land use options were very similar to that of the adopted 2025 land use forecast. Differences among the options were so small as to be irrelevant for developing land use recommendations, since the vast majority of housing units were not affected by the land use scenario shifts.

- The analysis demonstrated distinct regional travel flow patterns. In the north urban area, where most of the flow is east-west, these become more balanced over time. That is, as many trips head eastbound, as westbound at any particular time of the day. This is in stark contrast to the rest of the region, where travel flows in a pronounced direction by time of day. Flow is strong into the north urban area in the morning with an equally strong reverse flow in the afternoon. In comparison, very little traffic heads the counter direction during these same times. This is illustrated in Figure 4-10. These patterns may affect regional transportation policy regarding level of service and investments.

Figure 4-10

Generalized Regional Travel Flows

North-south flow – marked directionality. *Toward* Lacey-Olympia-Tumwater urban area in morning, *away* from it in evening.

East-west flow – Relatively balanced, both directions in morning and evening.
4. Alternatives Analysis

- As expected, most travel times will increase. But how much increase is appropriate? Are regional expectations realistic? Based on the modeling analysis, a person commuting to work from Tenino to Tumwater in 2025 will experience a 43 percent increase in travel time compared to 2000. That sounds like a significant increase. However, averaged out over the 25-year period of this forecast, it results in a 17 second per-year increase. Is that unreasonable? Interestingly, a person commuting to work from Tumwater to Tenino would experience virtually no change in travel time from 2000 to 2025.

- The impacts of growth on travel time will be more pronounced in the rural areas than in the urban areas. This is not to say that urban travel times won’t increase, but urban streets are already more congested than rural roads. The relative change over time will be greater on rural roads.

Value of the Land Use Options Analysis

Analysis of the three land use options in comparison to the adopted forecast underscored the relationship between transportation and land use – how communities are built has direct influence on how people travel and the kind of system that is needed to support that travel.

More comprehensive analysis is warranted. Some of the seemingly minimal distinctions among these options may have appeared different if other factors that are influenced by community form were included, such as:

- Costs of other government services and infrastructure, such as schools, police, fire, water, and sewer. The cost of those services relates to the land use patterns being served.

- Long-term (50+ years) costs of maintaining facilities, especially on a per capita basis by type of land use.

- Spin-off economic benefits resulting from different kinds of land uses, and the demand for services and products those land uses generate. Different kinds of land uses generate different kinds of economic opportunities for businesses, large and small.
4. Alternatives Analysis

- Socio-economic impacts on specific sectors of the population, such as elders, youth or those with low incomes or disabilities. Transportation – or the lack thereof – impacts self-sufficiency and independence. Lack of viable transportation options for segments of the population creates an economic burden on families and society. Effective transportation options are a function of the land use pattern they serve.

- Personal costs of transportation (fiscal and time) and those impacts on the local economy. Studies around the country (including Puget Sound Regional Council’s “Cost of Transportation”) clearly indicate that the amount government spends on transportation facilities and services is dwarfed by out-of-pocket and intangible transportation expenditures made by individuals. Money and time an individual spends meeting day-to-day travel needs is money and time not available for investment elsewhere in the community and family structure.

The additional factors described above would augment initial work completed for this 2025 RTP and be useful in developing future RTP updates. Operating within the constraints of this analysis, though, the evaluation suggested that shifting 9 percent of future growth would not be enough to create demonstrable impacts on region-wide travel demand or the transportation network. The land use pattern already in place dilutes any significant impacts of those shifts when looking at the region as a whole, although distinct changes would be noticed within the close-in city centers.

Land Use Matters

Some may question the value of spending additional time looking at land use based on findings from this 2025 analysis. Aren’t the patterns already in place? How much difference can today’s decisions make on future land use? Clearly, shifting 9 percent of future residential growth from one part of the region to another did not generate radical changes in travel demand or system impacts.
4. Alternatives Analysis

The land use forecast – and the local and regional plans on which it is based – matter. Over 40 percent of all residential units that will be on the ground in 2025 will be built between 2000 and 2025. Table 4-2 summarizes the magnitude of residential development that will take place over the next 25 years, assuming it follows adopted land use plans. How and where that development actually occurs will strongly influence the kind of transportation issues and choices this region will face in 2025.

Table 4-2
Summary of Residential Development in the Adopted 2025 Forecast

<table>
<thead>
<tr>
<th>Land Use Area</th>
<th>Total Dwelling Units</th>
<th>Percent Of Total 2025 Stock Built Between 2000-2025</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Total in 2000</td>
<td>2000-2025</td>
</tr>
<tr>
<td>Cities & Town</td>
<td>41,225</td>
<td>22,006</td>
</tr>
<tr>
<td>Urban Growth Areas</td>
<td>17,996</td>
<td>19,130</td>
</tr>
<tr>
<td>Rural County</td>
<td>27,419</td>
<td>18,198</td>
</tr>
<tr>
<td>Total City & UGA</td>
<td>59,221</td>
<td>41,136</td>
</tr>
<tr>
<td>Total Region-wide</td>
<td>86,641</td>
<td>59,334</td>
</tr>
</tbody>
</table>

Explanations: Table 4-2 reflects the distribution of residential development based on the adopted 2025 region-wide population and employment forecast and the availability of suitable land for development as determined in the 2000 Buildable Lands Program.

The region’s land use pattern is not yet fully set. In fact, despite the abundance of “one-per-five-acre” suburban tracts in unincorporated Thurston County, vast tracts have not yet been subdivided. The density at which those large, undivided tracts develop can generate radically different transportation impacts on the rural road network.

Approximately 27,000 parcels are zoned for one-unit-per-five-acre development in unincorporated Thurston County. Of those, 23,000 are already five acres in size or smaller, leaving only 4,000 parcels large enough to be subdivided. If those remaining 4,000 parcels were divided into five-acre lots, they are large enough to yield about 24,000 more housing units in unincorporated Thurston County – requiring a host of public services such as transportation, schools, and emergency services. If those remaining 4,000 parcels were instead divided into 20-acre lots, they will yield about 3,000 housing
units in unincorporated Thurston County. This is an 800% difference in the number of potential housing units yielded by those 4,000 parcels.

Much of the region’s land use pattern is in place but much is still to be determined. Changing land use policies to affect a different outcome would be difficult. The alternatives analysis reiterated that land use choices and decisions made today will directly influence transportation issues, choices, and opportunities in 2025.

Vision Versus Reality

Evaluating the impacts of these hypothetical land use options on the 2025 transportation network pointed to the need for better integration of land use and transportation decision-making processes. Ten years into the Growth Management Act, the hard reality is that this integration is much more difficult than originally anticipated. Many factors are outside of local government control. Other factors may be within local government control, but are difficult to carry out consistently.

The 2025 land use options evaluation raised questions for which there are no ready answers. It underscored the need to better understand the market pressures that drive community development and to identify ways of better harnessing opportunities for making adopted land use visions a reality. Decisions and actions about how this region grows will frame future discussions about system performance, strategic investments, rural mobility, passenger rail, and many other transportation questions dependent on land use for their answers. Land use matters.

Value of the Corridor Analysis

The corridor analysis employed for the 2025 RTP evaluation did more than validate an intuitive understanding of regional travel patterns. It pointed to the unmistakable need for a more focused look at the region’s rural roads.

While in past years the region concentrated on transportation concerns in the urban areas, analysis for this RTP highlights rural mobility issues. Although unincorporated Thurston County is referred to as “rural,” it is increasingly suburban. Few of the people who now live in rural Thurston County actually maintain a resource-dependent lifestyle like agriculture or forestry, the region’s two principle rural economies. Instead, the vast majority of people commute to jobs in the urban areas and commute back home in the evening. This daily in- and out-migration puts a tremendous strain on
4. Alternatives Analysis

roads originally intended to serve true rural functions. Yet the solution to this increasing strain is not readily apparent.

Congestion levels will certainly increase over time on the region’s primary connections between outlying unincorporated areas and the cities. Rainier Road, Old Highway 99, Meridian Road, State Routes 507 and 510, Tilley Road, and Littlerock Road are already facing increased congestion pressures.

The corridor analysis, in conjunction with other performance measures like level of service and time of day modeling, raised questions that need to be answered before concluding that road widening is the appropriate way of dealing with these increased demands.

- Are current levels of service expectations for these rural roads appropriate to the uses they serve? Currently, LOS standards for these roads assume a high degree of mobility with minimal flow impacts due to congestion – a traditional rural road expectation. However, the development pattern in these areas is increasingly suburban in nature, not rural. Part of the problem may be attributed to unrealistic expectations about mobility on these roads.

- Is road widening consistent with the character of this area? The 2020 RTP proposed that local streets and roads not exceed five lanes. Does that standard apply county-wide? Would a five-lane Rainier Road be consistent with the desired character of the area?

- Are expectations of a “rural” Thurston County realistic? Is the eventual suburbanization of the entire region inevitable and, if so, should consideration be given now to retrofitting the transportation infrastructure (and other infrastructure and services) to accommodate full suburban uses? Evidence suggests that cities in the Thurston region are struggling to attract the kind of urban development originally anticipated. At the same time, demand for five-acre residential lots in unincorporated Thurston County continues. This creates a need to identify and address the resulting implications for facilities such as Rainier Road.
If these rural roads should be widened, who would pay for it? Cities have impact fee mechanisms in place to ensure that new developments help offset the costs of their impacts on the transportation system. Such a mechanism is not in place outside the cities. Increases in capacity on roads such as Rainier Road would be costly. Since development pressures generated in unincorporated Thurston County are predominantly residential, costs would likely be borne almost exclusively through fees on home construction, not commercial development.

In addition to these fundamental policy questions, the corridor analysis pointed to the need for some refinement to the model structure used for forecast evaluation. Model components like “traffic analysis zones” in rural parts of the region are sized for rural uses. But many of those parts of the region support a low-density suburban land use pattern. Technical refinements to improve the regional model’s capabilities in such areas have been identified and will be implemented prior to forecasting for the 2030 RTP.

Network Performance

Although various performance measures were evaluated during the alternatives analysis, recommendations for this RTP are based on a previously adopted congestion measure. That level of service standard, or LOS, describes how much traffic a particular street or road will carry compared to how much it was designed to carry. Map 4-1 shows where each of the various LOS standards is applied in the region.

Adopted LOS standards allow more congestion on city streets than on rural roads. Therefore, a congested “red line” on a map in the urban area does not necessarily equate to a red line on a rural facility. In the modeling process, it takes much less traffic to make a rural road “fail” than an urban one. Table 4-3 helps illustrate that what is considered acceptable or a “passing” level of congestion in the urban area may be considered unacceptable, or “failing,” in rural areas.

Table 4-3
Summary of Pass/Fail LOS Standards

<table>
<thead>
<tr>
<th>LOS Standard</th>
<th>Location of Street or Road</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>City Center / Core Area</td>
</tr>
<tr>
<td>A</td>
<td>Pass</td>
</tr>
<tr>
<td>B</td>
<td>Pass</td>
</tr>
<tr>
<td>C</td>
<td>Pass</td>
</tr>
<tr>
<td>D</td>
<td>Pass</td>
</tr>
<tr>
<td>E</td>
<td>Pass</td>
</tr>
<tr>
<td>F</td>
<td>Fail</td>
</tr>
</tbody>
</table>

Explanation: Table illustrates where LOS, or Level of Service, passes or fails as determined by location of facility. UGB refers to Urban Growth Boundary, the unincorporated urban area adjacent to the region's cities. Rural County refers to those areas outside any city, town, or Urban Growth Boundary.
4. Alternatives Analysis

Using this congestion performance measure, how do the region’s streets and roads perform when 2025 land use is projected onto the network? How well do recommendations included in this RTP address those issues?

Maps 4-3 and 4-4 depict how well the region’s transportation system can maintain adopted LOS standards if no additional road capacity projects are built between now and 2025. The red lines show where streets and roads will not meet current mobility expectations. Assuming those expectations are reasonable, facilities highlighted in red are projected to fail by 2025 without investments in capacity projects or some other efficiency measures.

Many people tend to expect that congestion and delay will increase in city centers and urban areas. What may not be anticipated is the projection that system performance will deteriorate on so many of the region’s vital north-south rural corridors.

Maps 4-5 and 4-6 illustrate the effect of the 2025 RTP recommendations on network performance. Notably, many red lines remain on these maps, even after the recommended projects are added to the forecasting model. This plan does not result in the elimination of all future deficiencies in the adopted LOS standards. Several of the remaining red lines are associated with recommended feasibility studies to determine whether road widening is the best solution. Most of the other red lines are considered “assessment areas” – locations or corridors that need a more detailed, operational level of analysis to understand the reasons they appear congested.

Further evaluation of these assessment areas may demonstrate that project investments in additional capacity are warranted. However, especially in the case of the region’s rural roads, such evaluation may suggest that expectations for future mobility are not consistent with the kinds of land uses those facilities are expected to serve. This underscores further the earlier discussion about the rural road issues that surfaced in this 2025 analysis.

Rural Roads Initiative

Questions raised by the 2025 analysis suggest the need for a rural roads initiative that tackles these issues and helps clear the way for a cohesive, long-range rural mobility strategy. While Thurston County has jurisdiction over most of these facilities, it is clearly a regional issue with implications for every city, town, and tribe. Questions and issues surrounding rural roads will be integral to any regional discussion about land use. The 2025 forecast analysis points to the need for focused effort in rural roads and regional land use prior to development of a 2030 RTP.
Summary of Alternatives

2025 No New Capacity Revenue (No Build Alternative)

The “No New Capacity Revenue” alternative – or “no build” alternative – depicts LOS conditions in 2025 if the only capacity projects completed between now and then were those already fully funded. The no build alternative:

- Has five regional roadway capacity projects – two in Lacey, one in Olympia, and two in Tumwater. Assumes no additional revenue for road capacity projects other than what was already secured.
- Excludes any project for which local agencies are currently collecting development fees unless already fully funded. Excludes projects that have received grants for design or right-of-way acquisition unless funding was also secured for construction.

2025 Unlimited Capacity Revenue (Full Build Alternative)

The “Unlimited Capacity Revenue” alternative – or “full build” alternative – depicts LOS conditions in 2025 if the region tried to build its way to meeting LOS with road construction. The full build alternative:

- Has 55 regional roadway capacity and alignment projects, spanning Lacey, Olympia, Tumwater, Yelm, Thurston County, and WSDOT’s state highways. The five projects in the no build alternative are part of the full build project list.
- Includes all the projects identified in the no build alternative plus unfunded projects to try to rectify outstanding LOS problems.
- Relies on locally adopted six-year Transportation Improvement Plans (TIPs), WSDOT’s Highway System Plan, the 2020 RTP, and the transportation model to identify projects.
- Focuses primarily on the urban core of Lacey, Olympia and Tumwater, with some notable additions expanding capacity along long stretches of rural roads in Thurston County, such as widening Old Highway 99, Rainier Road, SR 8, SR 507 and SR 510. This widening is extremely expensive, and raises many issues and concerns about land use, LOS standards, modeling intricacies, and financial constraint.
4. Alternatives Analysis

2025 Recommendation (Recommended Alternative)

The 2025 recommendation – or recommended alternative – begins with the base list of funding secured projects. It then adds the projects in the locally adopted six-year transportation improvement plans. These projects have undergone local operational analysis verifying need and are actively supported by their local jurisdiction which is pursuing funding. The recommended alternative:

- Has 46 roadway capacity and alignment projects within the jurisdictions of Lacey, Olympia, Tumwater, Yelm, Thurston County, Port of Olympia, WSDOT and the State’s Department of General Administration.
- Increases transit service within the recently reduced urban service area, in accordance with Intercity Transit’s adopted long-range plan.
- Was tested to investigate how changes in land use might influence the needs of the transportation network, and what new performance indicators might be used to evaluate the transportation network.
- Falls between no and full build alternatives in scope.
- Identifies the rural capacity issue as an important area of study.
- Converts many of the rural capacity projects proposed in the full build alternative to studies.

The options were evaluated using LOS standards and vehicle miles traveled (VMT). These smaller shifts in land use – only tested on the recommended alternative – did not substantially change traffic impacts to the regional network.

Additionally, mode split, time-of-day, and corridor travel time were investigated as appropriate performance indicators. These new measures, tested on the recommended alternative, show promise for use in future LOS standards, but require additional analysis. The tests produced some clear messages:

- Travel time between most points in the region will increase.
- Between the rural south County and the city centers, a large a.m. in-bound commute and corresponding p.m. out-bound commute will occur.
- Average vehicle miles traveled will increase.
- How land use develops will affect mode split, particularly in urban areas.
5. Finance

Using money wisely
Finance

“It is better to be generally right than precisely wrong.”

Pete Swensson

This chapter demonstrates that the 2025 Regional Transportation Plan, as amended, is financially constrained, in compliance with state and federal laws. It furnishes an overview of the long-range forecast parameters for both revenues and costs. Following the overview are details of the forecasts, as amended, including key forecast assumptions. The forecast horizon has been extended by amendment to 2030 while maintaining financial constraint.

Financial Constraint

Legislation at both state and federal levels underscores the requirement that the RTP must be financially constrained. This means that the RTP only includes projects that the region can afford to complete with existing revenues or with revenues that are reasonably expected to be available. The requirement helps ensure that the long-range plan serves as a realistic regional blueprint for transportation policy and investment, and not an unrealistic wish list. Financial constraint forces the region’s partners to think strategically about transportation, prioritize, and make difficult choices.

The RTP financial forecast must consider not only the cost to expand the transportation system to meet future demand, but also the cost to take care of the existing system. It would be fiscally irresponsible to assume revenue for future expansion of the transportation system if the existing system deteriorates through lack of funding for maintenance or repair. The RTP must show that the region can take care of what is already in place and still afford any recommended expansion of facilities, programs or services.

Forecast Levels of Detail

Developing a constrained annual budget is challenging. Once budget assumptions are developed, the economy may change or new legislation may pass, requiring a budget revision. If creating a one-year budget is so difficult, how can a realistic 25-year forecast be developed?

In many respects it’s easier to develop a 25-year forecast than a one-year budget. Long-range revenue and expenditure forecasts
5. Finance

are necessarily less detailed than the six-year Transportation Improvement Programs and Capital Facilities Plans each local agency develops, and much less specific than a typical annual operating budget. TRPC frequently updates base and future year assumptions through the annual RTP amendment process.

The regional forecast guides long-term policy and investment decisions but in a much more general way than an operations budget governs day-to-day decisions. The forecast doesn’t duplicate the detailed budgeting and programming efforts at the local level, but rather serves as an aggregate check on regional reality. It supplies a reasonable estimate of likely revenues and expenditures throughout the region, regardless of jurisdiction or mode of travel.

Forecasting Revenues

In 2003, Intercity Transit replaced a revenue source lost in 2000. With this exception, the region has no expectation of new transportation revenues. It is reasonable to assume – with some caution – that revenues will continue to reflect historical growth trends, requiring fiscally-conservative investment decisions and difficult trade-offs. Since that has been the local investment mode for some years, it does not reflect a new direction.

The revenue forecast is concerned primarily with revenues attributed to cities, towns, and the County. The RTP does not establish projections for entities like the Washington State Department of Transportation or the Port of Olympia, nor does it make assumptions about tribal revenues and expenditures. Funding issues for these partners are very important, but state and federal fiscal constraint requirements of the RTP do not extend to these partners.

In contrast to the detail found in annual operating budgets, the RTP forecast consolidates the various revenue sources into three basic categories.

- Local revenue refers to those funds generated locally. This includes a large assortment of sources, ranging from various city and county taxes and fees to farebox revenues and sales tax generated by Intercity Transit.

- State revenue refers to those funds generated by state taxes or fees, and passed on to local governments, or to Intercity Transit, by the state. These revenues are often generated by transportation functions, either in the form of the gas tax or various license or weight fees. Local agencies receive a small amount of this revenue directly through distributions but have to compete for most state revenue.
• Federal revenue refers to those funds generated by the federal gas tax and then passed on to local transportation projects through regional allocations conducted by TRPC, legislative processes, or statewide competitions.

Local option revenue is a fourth type of revenue with no increases included in the RTP forecast, but of regional interest. Local option revenue includes those sources that are available to agencies in the Thurston region by law, but which have not yet been tapped or still have extra levy capacity. They usually require a public vote for approval. These revenues include an additional sales tax levy for Intercity Transit, and gas tax for cities, towns, and the County. While these local option revenues are difficult to implement, they may offer expanded opportunity for local determination in the prioritizing and programming of funds.

Forecasting Costs

Transportation funds are limited. Local, tribal, regional, and state governments must evaluate priorities, think strategically, and stretch limited resources as far as possible.

At the local level, expenditure decisions are played out on a project-by-project basis. What segment of road is the highest priority for resurfacing? Which of the dozens of bridges needing retrofit or replacement will be rebuilt next? Which bus can be shifted to offset overcrowding on another route? What neighborhood will receive sidewalks in next year’s budget? Which curve will be realigned next? Policy makers balance each of these decisions against many other competing needs and priorities.

The RTP does not supply this level of detail. Most of those project-level details are best handled at the local level, through annual budget processes, six-year Transportation Improvement Programs, and the 10- or 20-year transportation elements of Comprehensive Plans, sub-area plans, or other studies. The RTP focuses instead on those relatively few projects that significantly impact the traffic patterns throughout a large area. These “regionally significant” projects represent the only project-level detail found in the RTP.
5. Finance

Because this is a Regional Transportation Plan and not a local plan, it presents sufficient detail on regionally significant projects to facilitate informed policy and public discussion about priorities, and to demonstrate air quality conformity. The RTP does not include that same level of cost or scope detail for other kinds of projects, programs, and services. However, it does account for their costs as part of the overall regional transportation investment needs through the forecasting process.

Local project functions are aggregated into a few broad, representative categories. Short-range details of those locally significant projects are referenced in Appendix B. The RTP assumes the locally significant projects that maintain the system in a safe and cost-effective manner are a funding priority. To achieve financial constraint on the cost side of the forecast equation, the RTP looks to the list of regionally significant projects for ways of reducing long-range expenditures if necessary. The RTP does not use the local investments in maintenance, operations, or preservation of the existing system as a means of reducing overall regional costs.

Least Cost Planning

The Regional Transportation Plan is required by the state to consider least cost planning in developing recommendations. The underlying premise is that a project or recommendation generates the greatest benefit to the greatest number of people for the longest time at the lowest ultimate cost.

While the concept is worthy, actual implementation is extremely difficult. Every cost and every benefit should be calculated for many different options. This includes public sector costs as well as private sector costs. It includes direct and indirect – or external – costs. Costs include: Personal out-of-pocket expenditures to own and operate a car and the aggregate community value of time spent traveling or sitting in congestion; the estimated costs to individual businesses or freight movers for congestion resulting from various options; direct and indirect opportunity costs on both the public and private sector sides; and changes in land value attributable to different options considered. Implemented fully, many other costs would also be included. Sensitivity analysis would be required to assess some of...
the more intangible costs. Such input would likely point to some different outcomes, but for a region the size of Thurston County such an endeavor is simply not feasible.

The Thurston region supports least cost solutions in its own way, and over the years has taken incremental steps to:

- Use optimal pavement management programs and restrict utility cuts into above-average pavement;
- Reduce accidents by improving design of roads, sidewalks, bike lanes, and transit facilities;
- Increase efficiency through operational improvements;
- Support travel demand management;
- Coordinate technology investments to ensure unhindered emergency vehicle access;
- Minimize delay and local street impacts when major incidents shut down I-5;
- Reduce non-productive transit service; and
- Build more transportation-efficient communities.

TRPC supports concepts inherent in least cost planning, investing discretionary Surface Transportation Program funds in those projects that make the system safer or more efficient instead of bigger. The annual Unified Planning Work Program targets tough issues like land use, rural mobility, and Intelligent Transportation System needs. More will be done incrementally – as needs and opportunities arise, and issues are explored. Keeping public and private costs as low as possible is inherent in all the recommendations and policies in this Plan.

Implications of Financial Constraint

Major capacity projects cannot be funded unless specifically identified in the Regional Transportation Plan. This has serious implications for local agencies seeking state or federal funding for one of these big, regionally significant projects.

By state and federal law, regionally significant projects cannot be included in Comprehensive Plans and Capital Facilities Plans unless they are also in the long-range transportation plan. If not, development fees, federal grants, and most state grants cannot be sought.
5. Finance

If there’s not enough forecasted money to do all that the community would like, and still keep the existing system running, then something has to be eliminated from the RTP recommendations. The RTP meets financial constraint by eliminating lower priority regionally significant projects, rather than reducing local expenditures for taking care of the existing system.

Including a project on the RTP list does not guarantee funding. Some projects in this RTP have existed since the mid-1970s. Local agencies have very little discretion over most of the money they receive to fund big projects. Most project funding decisions are made by granting agencies like the Transportation Improvement Board, the County Road Administration Board, and even TRPC. The agencies distributing the funds decide priorities. This makes it very difficult for local agencies to program projects in a logical and timely fashion. It is also why this RTP does not identify priorities on the list. If TRPC had sufficient funding for these projects, it could develop a very good prioritization and selection process. However, without this leeway, too rigid of a prioritization process could hamper the ability of local agencies to compete against other communities for funding. Additionally, the Plan is updated annually, allowing frequent course corrections over the forecast period.

Over the next 25 years, the region will accomplish more than anticipated some years and less in other years. The longer the forecast horizon, the greater the likelihood that priorities will need shifting or refinement in the future. Base assumptions are updated annually, priorities are recalibrated, and forecasts are revised. These are all factors to keep in mind when reviewing the long-range regional forecasts.

The Long-range Forecasts

The long-range forecast is divided into two elements:

- Streets, Roads, and Bridges, and
- Public Transportation.

All forecasts are in constant 2000 dollars. Assumption details follow the tables.
5. Finance

Table 5-1

2030 Streets, Roads, and Bridges Revenue Forecast
(in millions of constant 2000 dollars)

<table>
<thead>
<tr>
<th>Revenue Type</th>
<th>2000-2015</th>
<th>2016-2030</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Local</td>
<td>$560</td>
<td>$607</td>
<td>$1,167</td>
</tr>
<tr>
<td>State</td>
<td>$207</td>
<td>$188</td>
<td>$395</td>
</tr>
<tr>
<td>Federal</td>
<td>$74</td>
<td>$69</td>
<td>$143</td>
</tr>
<tr>
<td>Total Estimated Revenues</td>
<td>$841</td>
<td>$864</td>
<td>$1,705</td>
</tr>
</tbody>
</table>

Table 5-2

2030 Streets, Roads, and Bridges Expenditure Forecast
(in millions of constant 2000 dollars)

<table>
<thead>
<tr>
<th>Expenditure Type</th>
<th>2000-2015</th>
<th>2016-2030</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Construction (Locally Significant Projects)</td>
<td>$215</td>
<td>$217</td>
<td>$432</td>
</tr>
<tr>
<td>Maintenance, Preservation, & Operations</td>
<td>$300</td>
<td>$400</td>
<td>$700</td>
</tr>
<tr>
<td>Administration</td>
<td>$111</td>
<td>$170</td>
<td>$281</td>
</tr>
<tr>
<td>Regionally Significant Projects</td>
<td>$138</td>
<td>$107</td>
<td>$245</td>
</tr>
<tr>
<td>Total Estimated Costs</td>
<td>$764</td>
<td>$894</td>
<td>$1,658</td>
</tr>
</tbody>
</table>
Table 5-3

2030 Streets, Roads, and Bridges Forecast Summary
(in millions of constant 2000 dollars)

<table>
<thead>
<tr>
<th></th>
<th>2000-2015</th>
<th>2016-2030</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Revenues</td>
<td>$841</td>
<td>$864</td>
<td>$1,705</td>
</tr>
<tr>
<td>Total Expenditures</td>
<td>$764</td>
<td>$894</td>
<td>$1,658</td>
</tr>
<tr>
<td>Balance</td>
<td>$77</td>
<td>$(30)</td>
<td>$47</td>
</tr>
</tbody>
</table>

Table 5-4

2030 Public Transportation Revenue Forecast
(in millions of constant 2000 dollars)

<table>
<thead>
<tr>
<th>Revenue Type</th>
<th>2000-2015</th>
<th>2016-2030</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operating Revenue</td>
<td>$433</td>
<td>$383</td>
<td>$816</td>
</tr>
<tr>
<td>Capital Revenue</td>
<td>$32</td>
<td>$36</td>
<td>$68</td>
</tr>
<tr>
<td>Total Estimated Revenues</td>
<td>$465</td>
<td>$419</td>
<td>$884</td>
</tr>
</tbody>
</table>
Table 5-5
2030 Public Transportation Expenditure Forecast
(in millions of constant 2000 dollars)

<table>
<thead>
<tr>
<th>Expenditure Type</th>
<th>2000-2015</th>
<th>2016-2030</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Operations – Existing/Restored Service</td>
<td>$287</td>
<td>$445</td>
<td>$732</td>
</tr>
<tr>
<td>Operations – Expanded Service</td>
<td>$11</td>
<td>$30</td>
<td>$41</td>
</tr>
<tr>
<td>Capital – Existing/Restored Service</td>
<td>$15</td>
<td>$26</td>
<td>$41</td>
</tr>
<tr>
<td>Capital – Expanded Service</td>
<td>$10</td>
<td>$12</td>
<td>$22</td>
</tr>
<tr>
<td>Capital – Facilities, Equipment and Other</td>
<td>$25</td>
<td>$23</td>
<td>$48</td>
</tr>
<tr>
<td>Total Estimated Costs</td>
<td>$348</td>
<td>$536</td>
<td>$884</td>
</tr>
</tbody>
</table>

Table 5-6
2030 Public Transportation Forecast Summary
(in millions of constant 2000 dollars)

<table>
<thead>
<tr>
<th></th>
<th>2000-2015</th>
<th>2016-2030</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Total Revenues</td>
<td>$465</td>
<td>$419</td>
<td>$884</td>
</tr>
<tr>
<td>Operating Costs</td>
<td>$298</td>
<td>$475</td>
<td>$773</td>
</tr>
<tr>
<td>Capital Costs</td>
<td>$50</td>
<td>$61</td>
<td>$111</td>
</tr>
<tr>
<td>Balance</td>
<td>$117</td>
<td>$117</td>
<td>$0</td>
</tr>
</tbody>
</table>
5. Finance

Streets, Roads, and Bridges Forecast Assumptions

REVENUES

Key assumptions and factors underlying this regional revenue forecast:

- Historical trends were assessed using Budget and Accounting Reporting System (BARS) data from the Washington State Auditor’s Office, as compiled by the Economics Branch of the Washington State Department of Transportation.

- “Local revenues” include property taxes, special assessments, general fund appropriations, and other local receipts like development fees, permits, sales and use tax, business and occupation tax, real estate excise tax, service fees, parking and traffic fines, and intergovernmental services for transportation work. Local revenues also include any private sector costs that are borne as a condition of development, but are not tracked or paid directly by local agencies.

- “State revenues” include state fuel tax distributed directly to cities, towns, and counties, state grants, miscellaneous state funds like camper excise tax, and any project-specific funding allocations, such as revenue from The Evergreen State College for a regionally significant street project.

- “Federal revenues” include direct and indirect grants, block grants, Federal Emergency Management Agency revenues, various revenues from the Surface Transportation Program fund, and any project-specific revenues from agencies like the Federal Aviation Administration for regionally significant road projects.

- “Traffic policing” is not included in this revenue forecast, although it is considered a specific transportation function by the State Auditor.

- Local revenues are projected to grow at a slower rate than they did between 1990 and 2000, reflecting the effects of recent voter Initiatives, and a flagging state and national economy. Transportation will experience more pressing competition for local revenues as agencies seek to backfill lost revenues in other programs and services. The projected annual growth rate of 1.9 percent for the long-term reflects the average annual rate of growth used for the adopted population forecast. Additional detail illustrates the forecasted local revenue attributed to development fees, based on historical trends.
5. Finance

- State revenue forecasts were developed for direct gas tax distributions and all other state revenues, typically competitive grants. Both assume multiple state gas tax increases between now and the forecast year, and that local agencies will receive some portion of the increase in the form of direct distributions and competitive state grants.

- Assumptions for direct gas tax distributions acknowledge that cities and towns experience a much lower rate of growth in this revenue than unincorporated jurisdictions. This forecast assumes that cities and towns will see a 0.2 percent average annual growth rate in direct gas tax distributions (compared to a 0.04 percent average growth rate between 1995 and 2000), and that the County will see a 2.0 percent average annual growth rate.

- Assumptions for all other state revenues rely on average annual receipts rather than growth rates, reflecting the competitive nature of these revenues.

- Federal revenue forecasts assume that some equivalent of the ISTEA legislation (Intermodal Surface Transportation Efficiency Act and its successors) will continue throughout the life of this forecast period. This forecast details that aspect of federal funding – regional Surface Transportation Program (STP) funds – over which TRPC has programming discretion.

- This revenue forecast does not fully account for funding deficits in local pavement management programs. Left unchecked, this will result in increasing deficits over time as surface conditions deteriorate and routine rehabilitation options are replaced with costly reconstruction needs. Local agencies employ effective pavement management programs, however, the state supplies insufficient discretionary funds for this work. This forecast assumes that over the 25-year period, some extra revenue will be available for this need but that it will not be fully funded.
5. Finance

Streets, Roads, and Bridges Forecast Assumptions

EXPENDITURES

Key assumptions and factors underlying this regional expenditure forecast:

- Historical trends were assessed using Budget and Accounting Reporting System (BARS) data from the Washington State Auditor’s Office, as compiled by the Economics Branch of the Washington State Department of Transportation. They were adjusted for inflation to reflect constant 2000 dollars.

- “Construction” costs include engineering, right-of-way, roadway, storm drainage, structures, traffic and pedestrian services, sidewalks, special purpose paths, street lighting, traffic control devices, parking facilities, roadside development, ancillary operations, debt service, and construction administration and overhead as reported to the state auditor by each agency. These are the general costs for local level projects and programs only, and do not include regionally significant project costs identified separately as a part of the preferred alternative.

- “Maintenance, Preservation, and Operations” costs include all maintenance functions associated with the construction elements, as well as snow and ice control, street cleaning, plant maintenance and construction, and extraordinary operations. Pavement management programs fall within this category of expenditures.

- “Administration” costs include general administration.

- “Traffic policing” is not included in this expenditure forecast, although it is considered a specific transportation function by the State Auditor.

- “Construction” costs reflect the 1995-2004 average annual cost, inflated to constant 2000 dollars and projected over the term of the forecast. No trend is discernible over time, from 1990 through 2004, in growth in these costs.

- “Maintenance, Preservation, and Operations” costs reflect that no significant transportation revenue source is dedicated for cities and towns. Unlike unincorporated jurisdictions that see a growth trend in these investments, cities and towns have exhibited no clear trend in investments. This forecast reflects conservative growth on the part of the County to
compensate for the increasing pressures from Initiatives 601 and 695 on County programs, which are likely to be felt in the transportation program.

- “Administration” costs assume a steady annual expenditure based on the 1995-2004 average annual cost, inflated to constant 2000 dollars.

- “Regionally Significant Projects” costs reflect those projects, programs, and services included in the recommendation. In the streets, roads, and bridges forecast, regionally significant projects may be street and road projects, dedicated non-motorized or Class I facilities, or large-scale investments in transportation technologies. WSDOT projects are not included.

- Historical investment in regionally significant projects was evaluated using Regional Transportation Improvement Programs from 1992, and data from the Washington State Department of Transportation and the Transportation Improvement Board. Those project costs were identified as part of the historical expenditures analysis, and deducted prior to developing forecast assumptions for local level construction costs.

- In determining the break-out between 2000-2015 and 2016-2030 costs for regionally significant projects, local TIPs were consulted. Projects identified in the 2006-2011 TIPs (or an equivalent) were included in the first part of the forecast. All remaining projects were included in the second part of the forecast. This distinction is for illustrative purposes only. Actual progress of regionally significant projects will depend on how successful agencies are in securing grants.
5. Finance

Public Transportation Forecast Assumptions

GENERAL

- The PTBA will continue in its present configuration, providing a limiting factor on both costs and revenues.
- Intercity Transit’s 2006-2011 Transit Development Plan (TDP, April 2006) is an appropriate foundation from which to build the 25-year forecast.
- All costs and revenues are in constant 2000 dollars.
- In the context of a 25-year regional forecast, Intercity Transit’s vanpool program is very nearly a self-sufficient operation, compared to fixed-route and Dial-a-Lift services. For that reason the vanpool program was not included in this forecast process, although the RTP recognizes it as a very important component of the region’s public transportation program.

Public Transportation Forecast Assumptions

REVENUE

- A 0.6 percent sales tax rate will be in effect through 2030.
- Sales tax was projected at an average growth rate of 1.95 percent annually after inflation.
- Other operating revenues will decline over time at an average annual rate of 6.0 percent, as projected in the 2006-2011 TDP.
- Overall, operating revenue was projected to grow at an average annual rate of 0.2 percent over the forecast period.
- Capital revenue projections were based on the average annual amount forecasted by I.T. for the 2006-2011 period.
- Some federal revenue is earmarked exclusively for capital projects. Some other revenue may be converted to operating revenues at I.T.’s discretion. This forecast reflects the split between operating and capital currently projected in the 2006-2011 TDP. That may change in the future based on I.T.’s needs and is not estimated in this forecast.
Public Transportation Forecast Assumptions

EXPENDITURES

- Regarding “existing” versus “expanded” service, service levels were not considered “expansions” or increased services until 1997 levels (fixed route) and 1998 levels (Dial-a-Lift) are restored. Until that time, annual increases in service level were considered “restoration” and included as part of existing service. Once vehicle service hours (VSH) began to exceed the high levels experienced prior to the service cuts, a distinction was made between “existing” and “expanded” service. Target levels were about 206,000 VSH in fixed route services in 1997 (fixed route less approximately 24,000 shuttle service VSH) and about 61,500 VSH in demand response services in 1998 (including Custom Bus and Dial-a-Lift).

- In the TDP, working capital estimates increase at an average annual rate of 4.65 percent (in constant 2000 dollars). Projections based on that growth rate were made through the forecast year and then an “average annual amount” was calculated. This amount is too high for the near-term forecast and too low for the long-term forecast, but is an appropriate estimate for this purpose. It was incorporated into the forecast of operating costs and divided evenly between the 2000-2015 time horizon and the 2016-2030 time horizon.

Fixed route service expenditures:

- Expansion of fixed route service was projected to increase beyond 2013 at an average annual rate of 1.9 percent per year. This is the highest level of growth that can be accommodated within the forecast and still be financially feasible within the revenues generated by the assumptions above. To sustain a higher growth rate would require a tax increase in the 2013-2015 period, depending on the rate to sustain.

- All annual fixed route vehicle service hours above 206,000 per year were considered to be “expansion” of service for purposes of this forecast and were tracked separately from “existing / restoration” service hours. In application, increases in service become “existing service” when developing an actual operating budget.
5. Finance

- Operating costs were based on the average annual operating cost per VSH identified in the 2006-2011 TDP, converted to constant 2000 dollars. This was $83.56 per vehicle service hour.

Dial-a-lift service expenditures:

- The TDP projects an increase of 2,000 vehicle service hours per year. This forecast maintained that rate of increase through forecast horizon.

- No reduction in this rate of increase was made to achieve fiscal constraint with forecasted revenue projections. This forecast assumes those services would be funded before fixed route services if insufficient revenue existed to expand both services. At the same time, this forecast assumes that I.T. will manage to keep growth in Dial-a-Lift services to no more than 2,000 hours per year.

- The Plan considers all annual dial-a-lift vehicle service hours above 60,900 per year as “expansion” of service for purposes of this forecast that were tracked separately from “existing / restoration” service hours. In application, increases in service become “existing service” when developing an actual operating budget.

- Operating costs were based on the average annual operating cost per VSH identified in the 2006-2011 TDP, converted to constant 2000 dollars. This was $62.82 per vehicle service hour.
6. Environmental Considerations

Balance
Livability
Community
Stewardship
Environmental Considerations

Consideration of the environmental impacts of the Regional Transportation Plan expands well beyond the discussion in this chapter. Each project will undergo rigorous environmental analysis prior to building. In addition, these same projects are considered as a whole in the environmental analysis of the Plan (Appendix G).

This chapter highlights some of the central environmental issues raised in development of the RTP. It’s helpful to consider the environment and our impacts on it in three distinct layers: Natural, built and social environments.

The natural environment includes those aspects that come to mind upon hearing the word “environment” – air, water, earth, plants, animals, and energy resources. The built environment encompasses many of the physical aspects of human activity, such as noise, public health effects of toxic releases, land and shoreline use, historical and cultural preservation, transportation systems, and other public services and utilities. In addition, this chapter addresses topics regarding the social environment – how we relate to one another through the natural and built environments. Under the social heading, the Plan investigates issues of social justice in the location and building of facilities, as well as how changes in our society and the way we travel impact personal health.

Natural Environment

The natural environment involves those elements we think of as nature – flora and fauna, rocks and streams, air and energy sources. This section summarizes the major natural environment issues addressed by the Plan, and how those issues are accommodated in the Plan’s goals, policies, and recommendations. Air quality, water quality, habitat and energy use are the focus.

Air Quality

The Regional Transportation Plan models air quality impacts attributed to automobiles (cars, trucks, buses). The list of regionally significant projects recommended in the Plan is constrained by PM10, an air pollutant closely monitored in our region. The urban portion of Thurston County, called the maintenance area, has a federal budget for PM10 which puts a ceiling on the amount that can be produced by automobiles. Projects in the Regional Transportation Plan are modeled to estimate their impacts on that PM10 is particulate matter less than 10 microns in size.
6. Environmental Considerations

budget in the future. The total mix of projects must not exceed the PM10 budget for transportation. In the 2025 Plan, the project list does not exceed the Thurston County maintenance area PM10 allocation.

In fact, air quality is generally very good in Thurston County, and has improved measurably since the 1980s. Much of this improvement can be attributed to a steady decrease in particulate matter since 1990, largely due to improvements in wood smoke emissions. The highest annual reading for particulate matter has remained below the national standard since 1990. In addition, the highest annual reading for carbon monoxide, another air pollutant, remained below the national standard since 1992, ranging between 4 and 8 parts per million during that period.

The Regional Transportation Plan sets forth several policies and features intended to support the reduction and control of air pollutants:

- The first is the PM10 constraint. The Plan must show that the modeled mix of regionally significant projects does not exceed the budgeted PM10 allocation for the maintenance area.

- The transportation demand management goals and policies in Chapter 3 promote mixed-use urban development to reduce the need for auto travel; improve access to public transportation, ridesharing, bicycling and walking; encourage employers to help change commute patterns through telework, flex-time and compressed work weeks; and promote park-and-ride lot use and development.

- Thurston County has an active commute trip reduction (CTR) program – a transportation demand management strategy. In Thurston County, 94 worksites are affected by the state's CTR law or have voluntary programs. Of these, 84 are government worksites and 8 are private businesses or organizations. Statewide, the CTR program reduced the peak hour drive alone rate over 9 percent, eliminating nearly 21,000 vehicles from roads each day and 5,000 tons of air pollutants.

- The RTP emphasizes other goals and policies that materially contribute to the preservation and health of our environment and limit the impacts of air pollution. The Plan calls for consistency between land use and transportation, promoting development that supports non-motorized and transit travel.
6. Environmental Considerations

It calls for a multimodal transportation system, decreasing the need for drive alone trips. It encourages the use of transportation technologies to improve the operation of the system, which often result in air quality improvements. The Plan also promotes appropriate levels of public transportation, and an increase in the share of all trips made by biking and walking. The Plan supports minimizing transportation impacts on the natural environment and people in Thurston County through creating mixed use development, promoting alternative fuels and technology developments that reduce motorized vehicle emissions, encouraging non-motorized modes of transportation, and coordinating closely with the Olympic Region Clean Air Authority and the Washington State Department of Ecology in meeting federal Clean Air Act requirements.

Water Quality

Thurston County has a large number of surface water bodies. Glacial activity in the county’s geologic past left the land dotted with lakes and ponds. The northernmost boundary of the county is determined by the shoreline of Puget Sound. Budd, Henderson, and Eld Inlets are exclusive to the County. Totten Inlet divides Thurston and Mason Counties, and the Nisqually River separates Thurston from Pierce County. In the County, four watersheds flow to the Pacific Ocean basin and five watersheds flow into Puget Sound.

The Plan contains many policies that protect water quality.

- Limiting impervious surface area and avoiding, decreasing and/or treating stormwater runoff;
- Minimizing road crossings through environmentally sensitive areas; and
- Using planning, design and construction measures that minimize negative impacts on priority fish-bearing streams.
6. Environmental Considerations

Habitat

Protecting wildlife and native plant species are important considerations in any construction project, and federal, state and local laws focus on endangered species, wetlands, and other critical areas. These are addressed specifically in the environmental and land use review and permitting processes construction projects undergo. Additionally, the Regional Transportation Plan specifies policies regarding habitat.

- Discouraging road crossings through designated environmentally sensitive areas and habitat corridors; and
- Using transportation planning, design and construction measures that minimize negative impacts on priority fish-bearing streams.

Energy

Automobile transportation generally relies on combustion engines using gasoline and diesel. In our region, the local market for biodiesel is growing. Biodiesel is a blended fuel made in part from clean burning recycled vegetable oils. Additionally, some fleet cars use natural gas, and many organizations have moved to hybrid gas-electric vehicles.

The Regional Transportation Plan contains several policies that promote and support energy conservation, including language that specifically promotes the use of alternative fuels.

Transportation demand management goals and policies also support energy conservation. Promoting mixed-use urban development reduces the need for auto travel. Improving access to public transportation, ridesharing, bicycling and walking decreases car trips. Encouraging employers to help change commute patterns through telework, flex-time and compressed work week schedules, and promoting park-and-ride lot use and development also decrease the number or length of car trips. Statewide, the CTR program results in an annual fuel savings of $9 to 11 million.
Many of the goals and policies described in the air quality section also promote energy conservation. For example, consistency between land use and transportation, development of a multimodal transportation system, and support for non-motorized and transit travel all promote situations where less fuel is used to make a trip. Transportation technologies can help us use the system more efficiently and can reduce energy use.

Built Environment

Man-made structures also form a component of our environment. Our homes, offices, shopping centers, roads, sidewalks, bike trails, water and sewer systems, fire stations, community centers – all these make up the environment we live in. How these relate to one another determines many of the choices we make in our daily lives. In particular for this Plan, how we use our land affects and is affected by transportation.

Land Use

Thurston County had approximately 212,000 residents in 2002 and 112,000 full and part time jobs in 2000. By 2025, the population is expected to crest at 334,000 with nearly 161,000 jobs. These population and employment forecasts are used to predict where growth will occur in the region, based on the locally adopted land use plans that regulate where houses and businesses may be built. The RTP is developed using a transportation model that incorporates these land use forecasts. The projects recommended by the Plan support local land use plans, improving access to housing and jobs throughout the county.

The Plan’s policies encourage transportation efficient mixed-use development where appropriate and transportation facilities that support the location of jobs, housing, industry and other activities as called for in adopted land use plans.
6. Environmental Considerations

Where we build transportation facilities and the types of transportation services we furnish can substantially affect the type of surrounding land use. Vice versa, where we build our homes and businesses can cause demand for additional roads and transportation services, sometimes where they are expensive and inefficient to deliver. This relationship between land use and transportation is important. In the 2025 Plan’s alternatives analysis, the region explored scenarios that would shift approximately 9 percent of future housing growth among city centers, the urban growth area, and the rural county. The affects of these alternative distributions on the transportation network are quite small. This is an important finding, suggesting that emerging land use and transportation patterns may be tough to impact, which in turn influences how we spend limited transportation dollars and the types of services that can be offered to residents.

Rural roads in the south County, in particular, are forecasted to undergo significant changes in use, with large volumes of traffic headed north in the morning to work and returning south in the evening to home. This represents an important shift in how the regional transportation system performs, and indicates an underlying issue regarding land use in the urban and rural areas. Policy makers identified analysis of land use and transportation as a priority work item resulting from this Plan.

The transportation system plays other important roles beyond allowing us to get to work and home. In Thurston County, residents have access to a number of public lands offering a variety of activities such as boating, fishing, biking, camping, hiking and wildlife viewing. Thurston County residents enjoy almost 50,000 acres of state and federal lands, including 2,900 acres of wildlife habitat at the Nisqually National Wildlife Refuge, 842 acres at Millersylvania State Park, and approximately 40,000 acres in the Capital Forest. We also have several major non-motorized trail systems, numerous city and county parks, access to water sports on rivers, lakes and Puget Sound, and hundreds of miles of bike lanes adjacent to local roadways.
6. Environmental Considerations

The regional transportation system, with its roads, sidewalks, bike lanes, and public transit system, provides access to these recreational facilities. The RTP's goals and policies specifically address the many modes we use to access recreation. Walking and biking facilities, such as the Chehalis Western Trail, are supported by both transportation and recreation planning and funds. Like the roadways, trail connections to local paths, sidewalks and streets are crucial. Many of our local jurisdictions have trail plans to improve non-motorized recreational access. In addition, the Regional Transportation Plan, in its recommendations, calls for development of a regional trail plan that establishes a connected trail system.

Transportation

The number of trips we make and the average distances we travel are both projected to increase over the next 20 years. This creates additional demand for new transportation facilities and services, upkeep of the facilities and services we already have, and pressure to increase efficiency while improving safety throughout the system.

The Regional Transportation Plan is based on a system of regionally significant roadways that provide the main thoroughfares through our community, forming a significant element of our built environment. It assesses overall transit service and includes broad recommendations for changes in transit service in a macroscopic scale. The Plan also investigates parking policies available to jurisdictions that would support transportation demand management goals, but does not make specific recommendations regarding the amount or location of parking.

Policies in the Plan reduce and control the development impacts of and on transportation facilities. The RTP encourages facilities compatible with approved land use, multimodal transportation options that are barrier free, and facilities that are safer. It prioritizes the repair, maintenance and preservation of existing infrastructure. It promotes increased use of travel demand management to reduce peak period drive alone trips, transportation technology to improve the transportation system safety and efficiency; and public transportation, biking and walking to increase system efficiency and options.

Development of most regional transportation facilities is driven by projected land use. As a result, increased public services will usually be demanded, such as fire protection, police protection, schools, water and sewer. Convenient and reliable access to these services depends on a well-functioning transportation system. How to supply
and pay for these needs presents a challenge. The 2025 Plan recommendation calls for a more comprehensive look at growth patterns and the cost of providing these public services.

6. Environmental Considerations

Historic and Cultural Preservation

Thurston County has a rich legacy of pre-historic and historical cultural resources extending back thousands of years to the earliest habitation of the Coastal Salish people. Beginning in the 1950s, historic preservation efforts began documenting the county’s significant cultural resources. TRPC recently updated a database of resources begun by the Washington State Office of Archaeology and Historic Preservation (OAHP). This database, along with a mapping tool, provides a valuable resource in meeting requirements for protection of historic resources. In addition to considering 1,329 cultural resources currently identified in the database, jurisdictions must also consult tribal cultural resource staff regarding properties or sites that are unpublished or whose location and significance are a tribal matter, as well as OAHP’s confidential record of known archaeological sites.

Potential transportation project related impacts may include physical changes to historic transportation infrastructure, effects of road widening on historic settings or structures, effects on historic roadside elements, effects of air pollution on resources due to increased traffic, and disturbance or infringement on cultural landscapes. The nature of these impacts is highly site and project specific, and the information about historic and cultural resources is constantly evolving. It is important for each project to be evaluated in the specific context and timeframe in which it is designed with up-to-date information.

Guiding principles, goals and policies in the Plan support investments that contribute to a community’s overall sense of place, including the preservation of historic and cultural resources. The Plan calls for road crossings to be minimized through designated sensitive areas, encourages a multimodal system that may lessen some transportation impacts on cultural and archaeological resources, and promotes good coordination and communication among agencies, including cultural resources staff, in communities impacted by transportation projects.

State and federal regulations require careful and specific consideration of project impacts on cultural resources, and local jurisdictions have enacted their own policies for historic resources. The RTP works in concert with these regulations to address potential impacts to historic and cultural resources.
6. Environmental Considerations

Social Environment

Location and access to transportation play key roles in how our society functions today. We became increasingly mobile during the twentieth century, fundamentally changing where most of us live and work. As a result, our social environment is shaped, impacted, and sometimes limited by our proximity to and use of the transportation systems available to us. Two areas to monitor in this social environment include environmental justice and personal health.

Environmental Justice

The federal Environmental Justice requirement asks that the region identify and address, as appropriate, disproportionately high and adverse human health or environmental effects of its programs, policies, and activities on minority and low-income populations.

In the Thurston region, low-income and minority populations are generally more concentrated in the urban core areas of Lacey, Olympia and Tumwater. However, the small rural communities of Bucoda, Yelm and Rochester have pockets of poverty. Rates of poverty for members of the Nisqually Tribe and Confederated Tribes of the Chehalis Reservation are much higher than the county average. There is a fairly even distribution of minority populations across the region.

The RTP’s emphasis on a multimodal system, with appropriate levels of transit and safe bicycle and pedestrian facilities supplies choices for all residents – regardless of ethnicity or income. Since the projects included are “regionally significant,” their benefit and impacts will be spread equitably across the region.

The region’s policy makers strongly support ongoing programs that look beyond traditional fixed route buses and coordinate the resources – vehicles and drivers – of non-profit, faith-based and other social service providers to create an efficient network of transportation choices for residents of rural communities. The Plan also contains policies that focus on barrier-free transportation, and enhanced public involvement strategies that encourage innovative means to reach out to all residents.
6. Environmental Considerations

Personal Health

Radical changes in where we live and the way we travel have impacted the personal health of most Americans. Over 60 percent of adults in the United States are overweight or obese, cutting across all ages, races, ethnic groups and both sexes. Physicians are seeing a related increase in obesity related disease, especially Type 2 Diabetes. While several factors contribute to this epidemic, sedentary lifestyles are a prime contributor, with roughly the same proportion of sedentary as overweight Americans. The marked increase in obesity in our society parallels a major shift in both diet and transportation over the last several decades. A number of factors – living farther from work and services, concerns about safety, more demands on our time, and increasing reliance on automobiles – have all contributed to a change in our transportation patterns. We have moved from using foot or bicycle for all or part of our trips, to making most of our trips, even very short ones, by automobile. This has greatly impacted the amount of exercise performed by most adults and many children during a typical day.

The Surgeon General says the number of overweight adolescents tripled over the past two decades. Programs like the International Walk to School Week each October hope to reverse the trend and reintegrate physical activity into our everyday lives.

The Regional Transportation Plan includes a number of policies and projects to support greater reliance on walking and biking. Land use policies support mixed use development, making walking and biking trips convenient for shopping and running errands in city centers. This is supported by local data that shows a much higher number of walking trips – both for trips between work and home, and trips among downtown businesses – in downtown Olympia than in other areas of our region. Transportation demand management policies promote greater access to and flexibility for using alternatives to driving alone, such as transit, carpooling, biking and walking. In addition, the Plan supports the development of regionally important non-motorized facilities which are also used for recreation, including development of a regional trail plan. The Regional Transportation Plan strongly promotes choice in transportation options, including driving but also creating more convenient opportunities for walking, biking and using transit.